当前位置: X-MOL 学术Artif. Life › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
How Computational Experiments Can Improve Our Understanding of the Genetic Architecture of Common Human Diseases
Artificial Life ( IF 2.6 ) Pub Date : 2020-04-01 , DOI: 10.1162/artl_a_00308
Jason H Moore 1 , Randal S Olson 1 , Peter Schmitt 1 , Yong Chen 1 , Elisabetta Manduchi 1
Affiliation  

Susceptibility to common human diseases such as cancer is influenced by many genetic and environmental factors that work together in a complex manner. The state of the art is to perform a genome-wide association study (GWAS) that measures millions of single-nucleotide polymorphisms (SNPs) throughout the genome followed by a one-SNP-at-a-time statistical analysis to detect univariate associations. This approach has identified thousands of genetic risk factors for hundreds of diseases. However, the genetic risk factors detected have very small effect sizes and collectively explain very little of the overall heritability of the disease. Nonetheless, it is assumed that the genetic component of risk is due to many independent risk factors that contribute additively. The fact that many genetic risk factors with small effects can be detected is taken as evidence to support this notion. It is our working hypothesis that the genetic architecture of common diseases is partly driven by non-additive interactions. To test this hypothesis, we developed a heuristic simulation-based method for conducting experiments about the complexity of genetic architecture. We show that a genetic architecture driven by complex interactions is highly consistent with the magnitude and distribution of univariate effects seen in real data. We compare our results with measures of univariate and interaction effects from two large-scale GWASs of sporadic breast cancer and find evidence to support our hypothesis that is consistent with the results of our computational experiment.

中文翻译:

计算实验如何提高我们对常见人类疾病遗传结构的理解

对癌症等常见人类疾病的易感性受到许多以复杂方式共同作用的遗传和环境因素的影响。最先进的技术是进行全基因组关联研究 (GWAS),该研究测量整个基因组中数百万个单核苷酸多态性 (SNP),然后进行一次一个 SNP 统计分析以检测单变量关联。这种方法已经确定了数百种疾病的数千种遗传风险因素。然而,检测到的遗传风险因素的影响非常小,并且对疾病的整体遗传性几乎没有解释。尽管如此,假设风险的遗传成分是由于许多独立的风险因素造成的。可以检测到许多影响较小的遗传风险因素的事实被视为支持这一观点的证据。我们的工作假设是常见疾病的遗传结构部分是由非加性相互作用驱动的。为了验证这一假设,我们开发了一种基于启发式模拟的方法,用于进行有关遗传结构复杂性的实验。我们表明,由复杂相互作用驱动的遗传结构与真实数据中单变量效应的大小和分布高度一致。我们将我们的结果与来自散发性乳腺癌的两个大规模 GWAS 的单变量和交互效应的测量值进行比较,并找到支持我们的假设的证据,该假设与我们的计算实验结果一致。我们的工作假设是常见疾病的遗传结构部分是由非加性相互作用驱动的。为了验证这一假设,我们开发了一种基于启发式模拟的方法,用于进行有关遗传结构复杂性的实验。我们表明,由复杂相互作用驱动的遗传结构与真实数据中单变量效应的大小和分布高度一致。我们将我们的结果与来自散发性乳腺癌的两个大规模 GWAS 的单变量和交互效应的测量值进行比较,并找到支持我们的假设的证据,该假设与我们的计算实验结果一致。我们的工作假设是常见疾病的遗传结构部分是由非加性相互作用驱动的。为了验证这一假设,我们开发了一种基于启发式模拟的方法,用于进行有关遗传结构复杂性的实验。我们表明,由复杂相互作用驱动的遗传结构与真实数据中单变量效应的大小和分布高度一致。我们将我们的结果与来自散发性乳腺癌的两个大规模 GWAS 的单变量和交互效应的测量值进行比较,并找到支持我们的假设的证据,该假设与我们的计算实验结果一致。我们开发了一种基于启发式模拟的方法,用于进行有关遗传结构复杂性的实验。我们表明,由复杂相互作用驱动的遗传结构与真实数据中单变量效应的大小和分布高度一致。我们将我们的结果与来自散发性乳腺癌的两个大规模 GWAS 的单变量和交互效应的测量值进行比较,并找到支持我们的假设的证据,该假设与我们的计算实验结果一致。我们开发了一种基于启发式模拟的方法,用于进行有关遗传结构复杂性的实验。我们表明,由复杂相互作用驱动的遗传结构与真实数据中单变量效应的大小和分布高度一致。我们将我们的结果与来自散发性乳腺癌的两个大规模 GWAS 的单变量和交互效应的测量值进行比较,并找到支持我们的假设的证据,该假设与我们的计算实验结果一致。
更新日期:2020-04-01
down
wechat
bug