当前位置: X-MOL 学术Theor. Popul. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling and control of mosquito-borne diseases with Wolbachia and insecticides.
Theoretical Population Biology ( IF 1.4 ) Pub Date : 2020-01-09 , DOI: 10.1016/j.tpb.2019.12.007
Yazhi Li 1 , Xianning Liu 2
Affiliation  

Mosquitoes cause more human suffering than any other organism. It is estimated that over one million people worldwide die from mosquito-borne diseases every year. With the continuous efforts of many researchers, Wolbachia gets more and more attention due to its characteristics of maternal transmission in mosquito population and it may cause cytoplasmic incompatibility (CI) which makes healthy females cannot fertilize normally after mating with infected males. In this paper, mathematical models are established to study Wolbachia transmission in mosquito population, and integrated mosquito control strategies are explored. Firstly, a classical ordinary differential system with general birth and death rate functions is established to describe the maternal transmission and CI effect. It is shown that the replacement strategy that the Wolbachia-uninfected mosquitoes are replaced by the infected ones is determined by the initial infection frequency. And Wolbachia spreads more easily for greater maternal transmission and CI rate. Moreover, all the wild mosquitoes will eventually be infected with Wolbachia if the maternal transmission is complete. Secondly, an impulsive state feedback control model is constructed to describe the integrated mosquito control. Besides Wolbachia, insecticides are sprayed when the quantity of mosquitoes reaches some Economic Threshold. The existence and stability of Wolbachia replacement periodic solution are discussed. Finally, some discussions are done and the future research directions are prospected.

中文翻译:

用沃尔巴克氏菌和杀虫剂对蚊媒疾病进行建模和控制。

蚊子比其他任何生物都会给人类带来更多的痛苦。据估计,全世界每年有超过一百万人死于蚊媒疾病。在许多研究者的不断努力下,沃尔巴克氏菌由于其在蚊子中的母源传播特征而受到越来越多的关注,并可能引起细胞质不相容(CI),这使得健康的女性与被感染的男性交配后无法正常受精。在本文中,建立了数学模型来研究Wolbachia在蚊子种群中的传播,并探索了综合的蚊子控制策略。首先,建立了具有一般出生率和死亡率函数的经典常微分系统来描述母体传播和CI效应。结果表明,未感染Wolbachia的蚊子被感染的蚊子替代的替换策略是由初始感染频率决定的。沃尔巴克氏菌更容易传播,以提高孕产妇传播和CI率。而且,如果母体传播完成,所有野生蚊子最终将感染沃尔巴克氏菌。其次,构建了一个脉冲状态反馈控制模型来描述综合的蚊虫控制。除沃尔巴克氏菌外,当蚊子的数量达到一定的经济阈值时,应喷洒杀虫剂。讨论了Wolbachia置换周期解的存在性和稳定性。最后,进行了一些讨论,并展望了未来的研究方向。沃尔巴克氏菌更容易传播,以提高孕产妇传播和CI率。而且,如果母体传播完成,所有野生蚊子最终将感染沃尔巴克氏菌。其次,构建了一个脉冲状态反馈控制模型来描述综合的蚊虫控制。除沃尔巴克氏菌外,当蚊子的数量达到一定的经济阈值时,应喷洒杀虫剂。讨论了Wolbachia置换周期解的存在性和稳定性。最后,进行了一些讨论,并展望了未来的研究方向。沃尔巴克氏菌更容易传播,以提高孕产妇传播和CI率。而且,如果母体传播完成,所有野生蚊子最终将感染沃尔巴克氏菌。其次,构建了一个脉冲状态反馈控制模型来描述综合的蚊虫控制。除沃尔巴克氏菌外,当蚊子的数量达到一定的经济阈值时,应喷洒杀虫剂。讨论了Wolbachia置换周期解的存在性和稳定性。最后,进行了一些讨论,并展望了未来的研究方向。构造了一个脉冲状态反馈控制模型来描述集成的蚊子控制。除沃尔巴克氏菌外,当蚊子的数量达到一定的经济阈值时,应喷洒杀虫剂。讨论了Wolbachia置换周期解的存在性和稳定性。最后,进行了一些讨论,并展望了未来的研究方向。构造了一个脉冲状态反馈控制模型来描述集成的蚊子控制。除沃尔巴克氏菌外,当蚊子的数量达到一定的经济阈值时,应喷洒杀虫剂。讨论了Wolbachia置换周期解的存在性和稳定性。最后,进行了一些讨论,并展望了未来的研究方向。
更新日期:2020-01-09
down
wechat
bug