当前位置: X-MOL 学术Ann. Biomed. Eng. › 论文详情
Adaptive Ankle Resistance from a Wearable Robotic Device to Improve Muscle Recruitment in Cerebral Palsy.
Annals of Biomedical Engineering ( IF 3.474 ) Pub Date : 2020-01-16 , DOI: 10.1007/s10439-020-02454-8
Benjamin C Conner,Jason Luque,Zachary F Lerner

Individuals with cerebral palsy can have weak and poorly coordinated ankle plantar flexor muscles that contribute to inefficient walking patterns. Previous studies attempting to improve plantar flexor function have had inconsistent effects on mobility, likely due to a lack of task-specificity. The goal of this study was to develop, validate, and test the feasibility and neuromuscular response of a novel wearable adaptive resistance platform to increase activity of the plantar flexors during the propulsive phase of gait. We recruited eight individuals with spastic cerebral palsy to walk with adaptive plantar flexor resistance provided from an untethered exoskeleton. The resistance system and protocol was safe and feasible for all of our participants. Controller validation demonstrated our ability to provide resistance that proportionally- and instantaneously-adapted to the biological ankle moment (R = 0.92 ± 0.04). Following acclimation to resistance (0.16 ± 0.02 Nm/kg), more-affected limbs exhibited a 45 ± 35% increase in plantar flexor activity (p = 0.02), a 26 ± 24% decrease in dorsiflexor activity (p < 0.05), and a 46 ± 25% decrease in co-contraction (tibialis anterior and soleus) (p = 0.02) during the stance phase. This adaptive resistance system warrants further investigation for use in a longitudinal intervention study.
更新日期:2020-03-24

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug