当前位置: X-MOL 学术arXiv.cs.CC › 论文详情
A complexity chasm for solving sparse polynomial equations over $p$-adic fields
arXiv - CS - Computational Complexity Pub Date : 2020-02-29 , DOI: arxiv-2003.00314
J. Maurice Rojas; Yuyu Zhu

We reveal a complexity chasm, separating the trinomial and tetranomial cases, for solving univariate sparse polynomial equations over certain local fields. First, for any fixed field $K\in\{\mathbb{Q}_2,\mathbb{Q}_3,\mathbb{Q}_5,\ldots\}$, we prove that any polynomial $f\in\mathbb{Z}[x_1]$ with exactly $3$ monomial terms, degree $d$, and all coefficients having absolute value at most $H$, can be solved over $K$ in deterministic time $\log^{O(1)}(dH)$ in the classical Turing model. (The best previous algorithms were of complexity exponential in $\log d$, even for just counting roots in $\mathbb{Q}_p$.) In particular, our algorithm generates approximations in $\mathbb{Q}$ with bit-length $\log^{O(1)}(dH)$ to all the roots of $f$ in $K$, and these approximations converge quadratically under Newton iteration. On the other hand, we give a unified family of {\em tetra}nomials requiring $\Omega(d\log H)$ bits to distinguish the base-$b$ expansions of their roots in $K$.
更新日期:2020-03-03

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
X-MOL
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug