当前位置: X-MOL 学术IEEE Trans. Signal Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sensing Matrix Design and Sparse Recovery on the Sphere and the Rotation Group
IEEE Transactions on Signal Processing ( IF 5.4 ) Pub Date : 2020-01-01 , DOI: 10.1109/tsp.2020.2973545
Arya Bangun , Arash Behboodi , Rudolf Mathar

In this article, the goal is to design deterministic sampling patterns on the sphere and the rotation group and, thereby, construct sensing matrices for sparse recovery of band-limited functions. It is first shown that random sensing matrices, which consists of random samples of Wigner D-functions, satisfy the Restricted Isometry Property (RIP) with proper preconditioning and can be used for sparse recovery on the rotation group. The mutual coherence, however, is used to assess the performance of deterministic and regular sensing matrices. We show that many of widely used regular sampling patterns yield sensing matrices with the worst possible mutual coherence, and therefore are undesirable for sparse recovery. Using tools from angular momentum analysis in quantum mechanics, we provide a new expression for the mutual coherence, which encourages the use of regular elevation samples. We construct low coherence deterministic matrices by fixing the regular samples on the elevation and minimizing the mutual coherence over the azimuth-polarization choice. It is shown that once the elevation sampling is fixed, the mutual coherence has a lower bound that depends only on the elevation samples. This lower bound, however, can be achieved for spherical harmonics, which leads to new sensing matrices with better coherence than other representative regular sampling patterns. This is reflected as well in our numerical experiments where our proposed sampling patterns perfectly match the phase transition of random sampling patterns.

中文翻译:

球体和旋转群上的传感矩阵设计和稀疏恢复

在本文中,目标是在球体和旋转群上设计确定性采样模式,从而构建用于带限函数稀疏恢复的传感矩阵。首先表明,由 Wigner D 函数的随机样本组成的随机传感矩阵通过适当的预处理满足受限等距特性 (RIP),并可用于旋转群的稀疏恢复。然而,相互相干性用于评估确定性和规则感测矩阵的性能。我们表明,许多广泛使用的常规采样模式产生的传感矩阵可能具有最差的相互相干性,因此不适合稀疏恢复。使用量子力学中角动量分析的工具,我们为相互相干提供了一种新的表达方式,这鼓励使用常规高程样本。我们通过固定高程上的常规样本并最小化方位极化选择上的相互相干性来构建低相干性确定性矩阵。结果表明,一旦高程采样固定,相互相干性有一个下限,该下限仅取决于高程样本。然而,这个下限可以通过球谐函数实现,这会导致新的传感矩阵比其他有代表性的常规采样模式具有更好的相干性。这也反映在我们的数值实验中,我们提出的采样模式与随机采样模式的相变完美匹配。我们通过固定高程上的常规样本并最小化方位极化选择上的相互相干性来构建低相干性确定性矩阵。结果表明,一旦高程采样固定,相互相干性有一个下限,该下限仅取决于高程样本。然而,这个下限可以通过球谐函数实现,这会导致新的传感矩阵比其他有代表性的常规采样模式具有更好的相干性。这也反映在我们的数值实验中,我们提出的采样模式与随机采样模式的相变完美匹配。我们通过固定高程上的常规样本并最小化方位极化选择上的相互相干性来构建低相干性确定性矩阵。结果表明,一旦高程采样固定,相互相干性有一个下限,该下限仅取决于高程样本。然而,这个下限可以通过球谐函数实现,这会导致新的传感矩阵比其他有代表性的常规采样模式具有更好的相干性。这也反映在我们的数值实验中,我们提出的采样模式与随机采样模式的相变完美匹配。可以实现球谐函数,这导致新的传感矩阵比其他有代表性的常规采样模式具有更好的相干性。这也反映在我们的数值实验中,我们提出的采样模式与随机采样模式的相变完美匹配。可以实现球谐函数,这导致新的传感矩阵比其他有代表性的常规采样模式具有更好的相干性。这也反映在我们的数值实验中,我们提出的采样模式与随机采样模式的相变完美匹配。
更新日期:2020-01-01
down
wechat
bug