当前位置: X-MOL 学术Korean J. Chem. Eng. › 论文详情
Fabrication methods of dry adhesive with various shaped microsuction cups
Korean Journal of Chemical Engineering ( IF 2.476 ) Pub Date : 2020-03-03 , DOI: 10.1007/s11814-019-0452-2
Myeongju Kang; Younghun Kim

Bio-inspired micro- and nanostructures are emerging as novel dry adhesives owing to their high aspect ratio micropillar structure, resulting in collective van der Waals attraction between the adhesive and the substrate. Specifically, gecko-inspired structures exhibit great adhesive properties on smooth surfaces; however, the pull-off strength of micropillars in gecko-inspired surfaces can be decreased by applying a preloading force. Therefore, octopus suckers or suction cup-like structures have been considered as alternative microstructures providing high adhesion force. The fabrication of both microsuckers and micropillar structures is complicated and requires sophisticated control of the microstructure using photolithography and sequential polymer-based replica molding. Therefore, in this study, a fabrication method for octopus-like and suction cup-like micropatterns on polymer matrix is suggested by simple replica molding using a single master wafer. The relationship between the total adhesion force and the effective surface area of micropatterns was established and calculated by summing the preloading force, the suction force in the normal direction, and the shear force induced by van der Waals attraction. The results of adhesion force measurement and the repeatability test show that the micropatches with square microholes have high adhesion force (16 N/cm2) and good repeatability of attachments/detachments over 100 cycles.
更新日期:2020-03-03

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
中洪博元
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
南开大学
朱守非
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug