当前位置: X-MOL 学术Chem. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Production of C2/C3 Oxygenates from Planar Copper Nitride-Derived Mesoporous Copper via Electrochemical Reduction of CO2
Chemistry of Materials ( IF 8.6 ) Pub Date : 2020-03-03 , DOI: 10.1021/acs.chemmater.0c00761
Mohamed Ebaid 1 , Kun Jiang 1, 2, 3 , Zemin Zhang 1 , Walter S. Drisdell 1, 4 , Alexis T. Bell 1, 2 , Jason K. Cooper 1, 4
Affiliation  

Electrochemical reduction of CO2 provides an opportunity to produce fuels and chemicals in a carbon-neutral manner, assuming that CO2 can be captured from the atmosphere. To do so requires efficient, selective, and stable catalysts. In this study, we report a highly mesoporous metallic Cu catalyst prepared by electrochemical reduction of thermally nitrided Cu foil. Under aqueous saturated CO2 reduction conditions, the Cu3N-derived Cu electrocatalyst produces virtually no CH4, very little CO, and exhibits a faradaic efficiency of 68% in C2+ products (C2H4, C2H5OH, and C3H7OH) at a current density of ∼18.5 mA cm–2 and a cathode potential of −1.0 V versus the reversible hydrogen electrode. Under these conditions, the catalyst produces more oxygenated products than hydrocarbons. We show that surface roughness is a good descriptor of catalytic performance. The roughest surface reached 98% CO utilization efficiency for C2+ product formation from CO2 reduction and the ratio of oxygenated to hydrocarbon products correlates with the degree of surface roughness. These effects of surface roughness are attributed to the high population of undercoordinated sites as well as a high pH environment within the mesopores and adjacent to the surface of the catalyst.

中文翻译:

通过电化学还原CO 2由平面氮化亚铜衍生的中孔铜生产C 2 / C 3含氧化合物

假设可以从大气中捕获CO 2,则电化学还原CO 2提供了一种以碳中和的方式生产燃料和化学品的机会。为此,需要有效,选择性和稳定的催化剂。在这项研究中,我们报告了通过热还原氮化铝箔的电化学还原制备的高介孔金属铜催化剂。在含水饱和CO 2还原条件下,源自Cu 3 N的Cu电催化剂几乎不生成CH 4,仅生成很少的CO,并且在C 2+产物(C 2 H 4,C 2 H 5 OH)中表现出68%的法拉第效率。和C3 H 7 OH),相对于可逆氢电极,电流密度为〜18.5 mA cm -2且阴极电位为-1.0V。在这些条件下,该催化剂比烃产生更多的氧化产物。我们表明表面粗糙度是催化性能的良好描述。最粗糙的表面通过还原CO 2形成C 2+产物达到98%的CO利用率,并且氧化产物与烃产物的比率与表面粗糙度有关。表面粗糙度的这些影响归因于中孔内以及邻近催化剂表面的大量未配位位点以及高pH环境。
更新日期:2020-04-23
down
wechat
bug