当前位置: X-MOL 学术Soft Matter › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Small-scale demixing in confluent biological tissues
Soft Matter ( IF 3.4 ) Pub Date : 2020/03/02 , DOI: 10.1039/c9sm01084j
Preeti Sahu 1, 2, 3, 4, 5 , Daniel M. Sussman 1, 2, 3, 4, 5 , Matthias Rübsam 6, 7, 8, 9, 10 , Aaron F. Mertz 5, 11, 12, 13 , Valerie Horsley 5, 12, 13, 14, 15 , Eric R. Dufresne 5, 11, 12, 13, 16 , Carien M. Niessen 6, 7, 8, 9, 10 , M. Cristina Marchetti 5, 11, 17, 18 , M. Lisa Manning 1, 2, 3, 4, 5 , J. M. Schwarz 1, 2, 3, 4, 5
Affiliation  

Surface tension governed by differential adhesion can drive fluid particle mixtures to sort into separate regions, i.e., demix. Does the same phenomenon occur in confluent biological tissues? We begin to answer this question for epithelial monolayers with a combination of theory via a vertex model and experiments on keratinocyte monolayers. Vertex models are distinct from particle models in that the interactions between the cells are shape-based, as opposed to distance-dependent. We investigate whether a disparity in cell shape or size alone is sufficient to drive demixing in bidisperse vertex model fluid mixtures. Surprisingly, we observe that both types of bidisperse systems robustly mix on large lengthscales. On the other hand, shape disparity generates slight demixing over a few cell diameters, a phenomenon we term micro-demixing. This result can be understood by examining the differential energy barriers for neighbor exchanges (T1 transitions). Experiments with mixtures of wild-type and E-cadherin-deficient keratinocytes on a substrate are consistent with the predicted phenomenon of micro-demixing, which biology may exploit to create subtle patterning. The robustness of mixing at large scales, however, suggests that despite some differences in cell shape and size, progenitor cells can readily mix throughout a developing tissue until acquiring means of recognizing cells of different types.

中文翻译:

融合生物组织中的小规模混合

由不同的粘附力控制的表面张力可以驱动流体颗粒混合物分类成单独的区域,,混合。在融合的生物组织中也会发生相同的现象吗?我们开始通过结合以下理论来回答上皮单层的这个问题一个顶点模型并在角质形成细胞单层上进行实验。顶点模型与粒子模型的不同之处在于,单元之间的交互是基于形状的,而不是取决于距离的。我们调查仅细胞形状或大小上的差异是否足以驱动双分散顶点模型流体混合物中的分解。出乎意料的是,我们观察到两种类型的双分散系统都可以在较大的长度范围内稳固地混合。另一方面,形状差异会在几个孔直径上产生轻微的混合,这就是我们所说的微脱模现象。通过检查邻居交换(T1跃迁)的差分能垒可以理解该结果。在底物上混合野生型和E-钙粘蛋白缺陷型角质形成细胞的混合物的实验与预测的微灭灭现象是一致的,哪些生物学可以利用它来创建微妙的图案。但是,大规模混合的鲁棒性表明,尽管细胞形状和大小存在一些差异,但祖细胞仍可以轻松地在整个发育组织中混合,直到获得识别不同类型细胞的手段为止。
更新日期:2020-04-01
down
wechat
bug