当前位置: X-MOL 学术Adv. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology
Advances in Physics ( IF 23.750 ) Pub Date : 2015-11-02 , DOI: 10.1080/00018732.2015.1114338
Shuai Dong , Jun-Ming Liu , Sang-Wook Cheong , Zhifeng Ren

Multiferroics are those materials with more than one ferroic order, and magnetoelectricity refers to the mutual coupling between magnetism (spins and/or magnetic field) and electricity (electric dipoles and/or electric field). In spite of the long research history in the whole twentieth century, the discipline of multiferroicity has never been so highly active as that in the first decade of the twenty-first century, and it has become one of the hottest disciplines of condensed matter physics and materials science. A series of milestones and steady progress in the past decade have enabled our understanding of multiferroic physics substantially comprehensive and profound, which is further pushing forward the research frontier of this exciting area. The availability of more multiferroic materials and improved magnetoelectric performance are approaching to make the applications within reach. While seminal review articles covering the major progress before 2010 are available, an updated review addressing the new achievements since that time becomes imperative. In this review, following a concise outline of the basic knowledge of multiferroicity and magnetoelectricity, we summarize the important research activities on multiferroics, especially magnetoelectricity and related physics in the last six years. We consider not only single-phase multiferroics but also multiferroic heterostructures. We address the physical mechanisms regarding magnetoelectric coupling so that the backbone of this divergent discipline can be highlighted. A series of issues on lattice symmetry, magnetic ordering, ferroelectricity generation, electromagnon excitations, multiferroic domain structure and domain wall dynamics, and interfacial coupling in multiferroic heterostructures, will be revisited in an updated framework of physics. In addition, several emergent phenomena and related physics, including magnetic skyrmions and generic topological structures associated with magnetoelectricity will be discussed. The review is ended with a set of prospectives and forward-looking conclusions, which may inevitably reflect the authors' biased opinions but are certainly critical.

中文翻译:

多铁性材料和磁电物理:对称性、纠缠、激发和拓扑

多铁性是那些具有多个铁性有序的材料,磁电是指磁(自旋和/或磁场)和电(电偶极子和/或电场)之间的相互耦合。尽管整个 20 世纪的研究历史悠久,但多铁性学科从未像 21 世纪头十年那样活跃,成为凝聚态物理和化学领域最热门的学科之一。材料科学。过去十年的一系列里程碑和稳步进展,使我们对多铁性物理的理解变得更加全面和深刻,进一步推动了这一激动人心的领域的研究前沿。更多多铁性材料的可用性和改进的磁电性能正在接近使应用触手可及。虽然可以提供涵盖 2010 年之前主要进展的开创性评论文章,但必须针对自那时以来的新成就进行更新的评论。本综述在简要概述多铁性和磁电学的基础知识的基础上,总结了近6年来多铁性,特别是磁电学及相关物理的重要研究活动。我们不仅考虑单相多铁性,还考虑多铁性异质结构。我们解决了有关磁电耦合的物理机制,以便可以突出这一不同学科的主干。关于晶格对称性、磁序、铁电产生、电磁子激发、多铁畴结构和畴壁动力学以及多铁异质结构中的界面耦合,将在更新的物理学框架中重新讨论。此外,还将讨论几种新兴现象和相关物理学,包括磁性斯格明子和与磁电相关的一般拓扑结构。审查以一组前瞻性和前瞻性结论结束,这些结论可能不可避免地反映了作者的偏见,但肯定是批判性的。将讨论包括磁性斯格明子和与磁电相关的一般拓扑结构。审查以一组前瞻性和前瞻性结论结束,这些结论可能不可避免地反映了作者的偏见,但肯定是批判性的。将讨论包括磁性斯格明子和与磁电相关的一般拓扑结构。审查以一组前瞻性和前瞻性结论结束,这些结论可能不可避免地反映了作者的偏见,但肯定是批判性的。
更新日期:2015-11-02
down
wechat
bug