当前位置: X-MOL 学术New Phytol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Combined GWAS and eQTL analysis uncovers a genetic regulatory network orchestrating the initiation of secondary cell wall development in cotton.
New Phytologist ( IF 9.4 ) Pub Date : 2020-02-29 , DOI: 10.1111/nph.16468
Zhonghua Li 1 , Pengcheng Wang 1 , Chunyuan You 2 , Jiwen Yu 3 , Xiangnan Zhang 1 , Feilin Yan 1 , Zhengxiu Ye 1 , Chao Shen 1 , Baoqi Li 1 , Kai Guo 1 , Nian Liu 1 , Gregory N Thyssen 4 , David D Fang 4 , Keith Lindsey 5 , Xianlong Zhang 1 , Maojun Wang 1 , Lili Tu 1
Affiliation  

The cotton fibre serves as a valuable experimental system to study cell wall synthesis in plants, but our understanding of the genetic regulation of this process during fibre development remains limited. We performed a genome-wide association study (GWAS) and identified 28 genetic loci associated with fibre quality in allotetraploid cotton. To investigate the regulatory roles of these loci, we sequenced fibre transcriptomes of 251 cotton accessions and identified 15 330 expression quantitative trait loci (eQTL). Analysis of local eQTL and GWAS data prioritised 13 likely causal genes for differential fibre quality in a transcriptome-wide association study (TWAS). Characterisation of distal eQTL revealed unequal genetic regulation patterns between two subgenomes, highlighted by an eQTL hotspot (Hot216) that established a genome-wide genetic network regulating the expression of 962 genes. The primary regulatory role of Hot216, and specifically the gene encoding a KIP-related protein, was found to be the transcriptional regulation of genes responsible for cell wall synthesis, which contributes to fibre length by modulating the developmental transition from rapid cell elongation to secondary cell wall synthesis. This study uncovered the genetic regulation of fibre-cell development and revealed the molecular basis of the temporal modulation of secondary cell wall synthesis during plant cell elongation.

中文翻译:

GWAS和eQTL的组合分析揭示了一个基因调控网络,该网络协调了棉花次级细胞壁发育的启动过程。

棉纤维是研究植物细胞壁合成的有价值的实验系统,但我们对纤维发育过程中这一过程的遗传调控的理解仍然有限。我们进行了全基因组关联研究(GWAS),并确定了与异源四倍体棉花中纤维质量相关的28个遗传基因座。为了研究这些基因座的调控作用,我们对251个棉种的纤维转录组进行了测序,并确定了15 330个表达定量性状基因座(eQTL)。在整个转录组关联研究(TWAS)中,对本地eQTL和GWAS数据的分析优先考虑了13种可能的因果基因,以区分不同的纤维质量。远端eQTL的特征揭示了两个亚基因组之间不平等的遗传调控模式,由eQTL热点(Hot216)突出显示,该热点建立了调节962个基因表达的全基因组遗传网络。发现Hot216的主要调控作用,尤其是编码KIP相关蛋白的基因的调控作用是负责细胞壁合成的基因的转录调控,其通过调节从快速细胞伸长到次级细胞的发育转变而有助于纤维长度。墙体合成。这项研究揭示了纤维细胞发育的遗传调控,并揭示了植物细胞伸长过程中次级细胞壁合成的时间调控的分子基础。被发现是负责细胞壁合成的基因的转录调控,它通过调节从快速细胞伸长到次级细胞壁合成的发育过渡而有助于纤维长度。这项研究揭示了纤维细胞发育的遗传调控,并揭示了植物细胞伸长过程中次级细胞壁合成的时间调控的分子基础。被发现是负责细胞壁合成的基因的转录调控,它通过调节从快速细胞伸长到次级细胞壁合成的发育过渡而有助于纤维长度。这项研究揭示了纤维细胞发育的遗传调控,并揭示了植物细胞伸长过程中次级细胞壁合成的时间调控的分子基础。
更新日期:2020-02-03
down
wechat
bug