当前位置: X-MOL 学术Curr. Opin. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanoparticle growth, coalescence, and phase change in the gas-phase by molecular dynamics
Current Opinion in Chemical Engineering ( IF 6.6 ) Pub Date : 2019-05-15 , DOI: 10.1016/j.coche.2019.04.001
Eirini Goudeli

Gas-phase synthesis of nanomaterials offers distinct advantages in large-scale manufacturing of commodities such as carbon blacks, ceramic oxides, semiconductors, and dielectric substances and facilitates the formation of highly pure materials with unique morphology that impact transportation, microelectronics, catalysis, biomedicine, and energy applications. Particle characteristics such as size, morphology, composition, and crystallinity play a key role in the aerosol process design and operation optimization. Depending on process conditions and the growth mechanism, such nanostructured particles form aggregates which are used in catalysis, and electronics and/or agglomerates that are attractive in pigments, nanocomposites, and liquid suspensions. Molecular-based simulations have been used extensively over the past two decades to shed light into the early stages of particle growth and kinetics during dry synthesis. This article gives an overview of recent advances in molecular dynamics simulations for the investigation of particle nucleation, condensation and sintering or coalescence rates in the gas-phase highlighting the effect of particle characteristics, such as crystallinity, at the nanoscale, on end-product properties.



中文翻译:

纳米粒子的生长,聚结和气相中的相变通过分子动力学

纳米材料的气相合成为大规模生产商品(例如炭黑,陶瓷氧化物,半导体和介电物质)提供了明显的优势,并有助于形成具有独特形态的高纯度材料,这些形态会影响运输,微电子,催化,生物医学,和能源应用。颗粒特征(例如大小,形态,组成和结晶度)在气溶胶工艺设计和操作优化中起着关键作用。根据工艺条件和生长机理,这种纳米结构的颗粒形成聚集体,用于催化,以及在颜料,纳米复合物和液体悬浮液中具有吸引力的电子和/或团聚物。在过去的二十年中,基于分子的模拟已被广泛使用,以阐明干法合成过程中粒子生长和动力学的早期阶段。本文概述了分子动力学模拟的最新进展,以研究气相中的颗粒成核,凝结和烧结或聚结速率,突出了纳米级的颗粒特性(如结晶度)对最终产品性能的影响。

更新日期:2019-05-15
down
wechat
bug