当前位置: X-MOL 学术Biophys. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spiral Wave Propagation in Communities with Spatially Correlated Heterogeneity
Biophysical Journal ( IF 3.4 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.bpj.2020.02.007
Xiaoling Zhai 1 , Joseph W Larkin 2 , Gürol M Süel 3 , Andrew Mugler 1
Affiliation  

Many multicellular communities propagate signals in a directed manner via excitable waves. Cell-to-cell heterogeneity is a ubiquitous feature of multicellular communities, but the effects of heterogeneity on wave propagation are still unclear. Here, we use a minimal FitzHugh-Nagumo-type model to investigate excitable wave propagation in a two-dimensional heterogeneous community. The model shows three dynamic regimes in which waves either propagate directionally, die out, or spiral indefinitely, and we characterize how these regimes depend on the heterogeneity parameters. We find that in some parameter regimes, spatial correlations in the heterogeneity enhance directional propagation and suppress spiraling. However, in other regimes, spatial correlations promote spiraling, a surprising feature that we explain by demonstrating that these spirals form by a second, distinct mechanism. Finally, we characterize the dynamics using techniques from percolation theory. Despite the fact that percolation theory does not completely describe the dynamics quantitatively because it neglects the details of the excitable propagation, we find that it accounts for the transitions between the dynamic regimes and the general dependency of the spiral period on the heterogeneity and thus provides important insights. Our results reveal that the spatial structure of cell-to-cell heterogeneity can have important consequences for signal propagation in cellular communities.

中文翻译:

具有空间相关异质性的社区中的螺旋波传播

许多多细胞群落通过可激发波以定向方式传播信号。细胞间异质性是多细胞群落普遍存在的特征,但异质性对波传播的影响尚不清楚。在这里,我们使用最小的 FitzHugh-Nagumo 型模型来研究二维异质群落中的可激发波传播。该模型显示了三种动态状态,其中波定向传播、消失或无限螺旋,我们描述了这些状态如何取决于异质性参数。我们发现,在某些参数范围内,异质性中的空间相关性增强了定向传播并抑制了螺旋。然而,在其他情况下,空间相关性会促进螺旋上升,我们通过证明这些螺旋由第二个不同的机制形成来解释一个令人惊讶的特征。最后,我们使用渗透理论的技术来表征动力学。尽管渗流理论没有完全定量地描述动力学,因为它忽略了可激发传播的细节,但我们发现它解释了动力学状态之间的转变以及螺旋周期对异质性的一般依赖性,因此提供了重要的见解。我们的结果表明,细胞间异质性的空间结构可能对细胞群落中的信号传播产生重要影响。尽管渗流理论没有完全定量地描述动力学,因为它忽略了可激发传播的细节,但我们发现它解释了动力学状态之间的转变以及螺旋周期对异质性的一般依赖性,因此提供了重要的见解。我们的结果表明,细胞间异质性的空间结构可能对细胞群落中的信号传播产生重要影响。尽管渗流理论没有完全定量地描述动力学,因为它忽略了可激发传播的细节,但我们发现它解释了动力学状态之间的转变以及螺旋周期对异质性的一般依赖性,因此提供了重要的见解。我们的结果表明,细胞间异质性的空间结构可能对细胞群落中的信号传播产生重要影响。
更新日期:2020-04-01
down
wechat
bug