当前位置: X-MOL 学术Rev. Mod. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Strong-field nano-optics
Reviews of Modern Physics ( IF 44.1 ) Pub Date : 
Péter Dombi, Zsuzsanna Pápa, Jan Vogelsang, Sergey V. Yalunin, Murat Sivis, Georg Herink, Sascha Schäfer, Petra Groß, Claus Ropers, Christoph Lienau

This review article discusses the present status and development of strong-field nanooptics, an emerging field of nonlinear optics. An exciting non-perturbative regime of light-matter interactions is reached when the amplitude of the external electromagnetic fields that are driving a material approach or exceed the field strengths that bind the electrons inside the medium. In this strong-field regime, light-matter interactions depend on the amplitude and phase of the field, rather than its intensity, as in more conventional perturbative nonlinear optics. Traditionally, such strong-field interactions have intensely been investigated in atomic and molecular systems and this resulted in the generation of high harmonic radiation and laid the foundations for contemporary attosecond science. During the last decade, however, a new field of research has emerged, the study of strong-field interactions in solid-state nanostructures. By using nanostructures, specifically those made out of metals, external electromagnetic fields can be localized on length scales of just a few nanometers, resulting in greatly enhanced field amplitudes that can exceed those of the external field by orders of magnitude in the vicinity of the nanostructures. This not only leads to dramatic enhancements of perturbative nonlinear optical effects but also significantly increases photoelectron yields. Most importantly, it resulted in a wealth of new phenomena in laser-solid interactions that have been discovered during the past years. These include the observation of above-threshold photoemission from single nanostructures, effects of the carrier-envelope phase on the photoelectron emission yield from metallic nanostructures and strong-field acceleration of electrons in optical near-fields on sub-cycle time scales. Here, we review the current state-of-the-art of this field and discuss several scientific applications that have already emerged from the fundamental discoveries. These include, among others, the coherent control of localized electromagnetic fields at the surface of solid-state nanostructures and of free-electron wavepackets by such optical near-fields, resulting in the creation of attosecond electron bunches; the coherent control of photocurrents on nanometer length and femtosecond time scales by the electric field of a laser pulse, and the development of new types of ultrafast electron microscopes with unprecedented spatial, temporal and energy resolution. The review concludes by highlighting possible future developments, discussing emerging topics in photoemission, potential strong-field nanophotonic devices, and giving perspectives for coherent ultrafast microscopy techniques. More generally, we wish to show that synergy between ultrafast science, plasmonics and strong-field physics holds promise for pioneering scientific discoveries in upcoming years. CONTENTS {I. INTRODUCTION} {A. Historical perspective} {II. INTERACTION OF LIGHT WITH METAL NANOSTRUCTURES} {A. Optical properties and field localization in nanoscale media} 1. Dielectric functions of metals. Linear optical properties 2. Surface plasmon polaritons 3. Metallic nanostructures {a. Plasmonic nanoparticles.} {b. Metallic nanotips and geometrical field enhancement effects.} {c. Nanofocusing of light.} {B. Nonlinear processes driven by enhanced near-fields …

中文翻译:

强场纳米光学

这篇评论文章讨论了强场纳米光学的现状和发展,它是非线性光学的新兴领域。当驱动材料的外部电磁场的振幅接近或超过束缚介质内部电子的场强时,就会达到令人兴奋的光-质相互作用的状态。在这种强场状态下,光-质相互作用取决于场的幅度和相位,而不是像更常规的摄动非线性光学器件那样取决于场的强度。传统上,已经在原子和分子系统中对这种强场相互作用进行了深入研究,这导致了高谐波辐射的产生,并为当代阿秒科学奠定了基础。然而,在过去的十年中,一个新的研究领域出现了,即固态纳米结构中强场相互作用的研究。通过使用纳米结构,特别是由金属制成的纳米结构,外部电磁场可以定位在仅几纳米的长度尺度上,从而大大增强了电场幅度,在纳米结构附近可以超过外部电场的幅度达几个数量级。 。这不仅导致扰动非线性光学效应的显着增强,而且显着提高了光电子产量。最重要的是,它在过去几年中发现的激光-固体相互作用中产生了许多新现象。其中包括观察单个纳米结构的阈值光发射,载流子-包络相对金属纳米结构的光电子发射率的影响以及子周期时间尺度上光学近场中电子的强场加速。在这里,我们回顾了该领域的最新技术,并讨论了基础发现中已经出现的几种科学应用。其中包括:通过此类光学近场对固态纳米结构表面的局部电磁场和自由电子波包进行相干控制,从而产生阿秒电子束;通过激光脉冲电场在纳米长度和飞秒时间尺度上对光电流进行相干控制,并开发出具有空前空间的新型超快速电子显微镜,时间和能量分辨率。回顾通过重点介绍未来可能的发展,讨论光发射中的新兴主题,潜在的强场纳米光子器件以及为相干超快速显微镜技术提供了观点进行了总结。更笼统地说,我们希望证明超快科学,等离激元学和强场物理学之间的协同作用有望在未来几年中开拓科学发现。目录{I. 简介} {A. {II。历史观点}。光与金属纳米结构的相互作用{A. 纳米级介质中的光学性质和场定位} 1.金属的介电功能。线性光学特性2.表面等离激元极化子3.金属纳米结构{a。等离子体纳米颗粒。} {b。金属纳米尖端和几何场增强效果。} {c。光的纳米聚焦。} {B。
更新日期:2020-04-26
down
wechat
bug