当前位置: X-MOL 学术Appl. Mater. Today › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Charge percolation in metal-organic framework (HKUST-1)‒graphene nanocomposites
Applied Materials Today ( IF 8.3 ) Pub Date : 2020-02-26 , DOI: 10.1016/j.apmt.2020.100604
Mohamed E.A. Safy , Rana R. Haikal , Basma Elshazly , Aya Hamdy , Fedaa Ali , Ahmed A. Maarouf , Mohamed H. Alkordi

Modulating the conductivity of microporous metal-organic frameworks (MOFs) through formulation of composites with graphene (G), as the conductive element, is demonstrated, without being limited to a particular MOF composition or topology. The synthesis allows for varying G content within the composite systematically, resulting in highly electrically conductive composites beyond 30 wt% G. The charge percolation model can effectively be utilized to describe the macroscopic electrical conductivity of the synthesized composites. Starting from a non-conductive MOF (HKUST-1, σ = 2*10−8 S m−1), enhanced conductivity can be accessed through increasing the G wt%, reaching more than nine orders of magnitude increase in conductivity up to 23.3 S m−1 for the composite containing 59.4 wt% G. A charge percolation threshold of 30 wt% G was observed, where sufficient G-G contacts were established within the composite. The ab initio DFT calculations on Cu-paddlewheel@G model indicated several non-covalent interactions, including OH⋯π and π‒π interactions, governing the deposition of the MOF on top of G (range of ‒101.3 kJ/mol to −113.8 kJ/mol). This approach is potentially transferable to the vast majority of MOFs, as surface functionalization of the conductive filler is not a prerequisite for the attainment of bottom-up assembly of the MOF@G.



中文翻译:

金属有机骨架(HKUST-1)‒石墨烯纳米复合材料中的电荷渗透

通过使用石墨烯(G)作为导电元素的复合材料的配方,证明了调节微孔金属有机骨架(MOFs)的导电性,而不限于特定的MOF组成或拓扑。该合成允许系统地改变复合材料中的G含量,从而使高导电性复合材料的G含量超过30 wt%。电荷渗流模型可以有效地用于描述合成复合材料的宏观电导率。从非导电MOF(HKUST-1,σ= 2 * 10 -8 S m -1)开始,可以通过增加G wt%来获得增强的电导率,电导率增加到93.3个数量级,直到23.3 S m -1对于含有59.4重量%G的复合材料,观察到电荷渗透阈值为30重量%G,其中在复合材料内建立了足够的GG接触。在Cu-paddlewheel @ G模型上的从头算DFT计算表明了几种非共价相互作用,包括OH⋯π和π‒π相互作用,控制了MOF在G顶部的沉积(1.3101.3 kJ / mol至-113.8范围) kJ / mol)。由于导电填料的表面功能化不是实现MOF @ G自底向上组装的先决条件,因此该方法可能可转移到绝大多数MOF。

更新日期:2020-02-26
down
wechat
bug