当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Embedded carbon in a carbon nitride hollow sphere for enhanced charge separation and photocatalytic water splitting
Nanoscale ( IF 6.7 ) Pub Date : 2020/02/26 , DOI: 10.1039/d0nr00226g
Lei Luo 1, 2, 3, 4, 5 , Jiani Ma 1, 2, 3, 4, 5 , Haixing Zhu 1, 2, 3, 4, 5 , Junwang Tang 6, 7, 8, 9
Affiliation  

Surface modification and morphological engineering are two important approaches to improve photocatalysis through enhancing photoabsorption and retarding charge recombination. Herein, a graphitic carbon integrated graphitic carbon nitride (C3N4) hollow sphere has been prepared via the modified shape-selective templating method in order to enchance light absorption and promote charge seperation under visible-light irradiation. MCM-41 that underwent carbonization at different temperatures in an inert atmosphere but not the conventional soft-template elimination was utilized as the sacrificial template. The resultant materials achieved an excellent photocatalytic performance with their hydrogen evolution rate reaching 718.1 μmol g−1 h−1, approximately 15 times higher than that of the bulk graphitic C3N4, resulting in 1.54% apparent quantum yield at 420 nm. The efficient photocatalysis was mainly attributed to the synergy of the vesicle morphology and carbon modification. The advantageous vesicle structure enhanced photoabsorption via the light scattering effect, while further carbon modification provided an efficient pathway to promote charge speration and transfer, which demonstrated that the carbon derived from the organic template residues (hexadecyl trimethyl ammonium bromide) was a facile yet effective medium to optimize the photocatalysis of C3N4.

中文翻译:

将碳嵌入氮化碳空心球中以增强电荷分离和光催化水分解

表面改性和形态工程学是通过增强光吸收和延迟电荷重组来改善光催化作用的两种重要方法。在此,已经通过改进的形状选择模板方法制备了石墨碳集成的石墨氮化碳(C 3 N 4)空心球,以增强光吸收并促进可见光照射下的电荷分离。使用在惰性气氛中在不同温度下碳化但没有常规软模板消除的MCM-41作为牺牲模板。所得材料具有优异的光催化性能,其氢释放速率达到718.1μmolg -1 h-1约为本体石墨C 3 N 4的15倍,因此在420 nm下的表观量子产率为1.54%。有效的光催化作用主要归因于囊泡形态和碳修饰的协同作用。有利的囊泡结构通过光散射效应增强了光吸收,同时进一步的碳修饰提供了促进电荷分布和转移的有效途径,这表明源自有机模板残基(十六烷基三甲基溴化铵)的碳是一种简便而有效的介质以优化C 3 N 4的光催化作用。
更新日期:2020-04-03
down
wechat
bug