当前位置: X-MOL 学术Mater. Horiz. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Giant spin Seebeck effect through an interface organic semiconductor
Materials Horizons ( IF 13.3 ) Pub Date : 2020-02-25 , DOI: 10.1039/c9mh01498e
V. Kalappattil 1, 2, 3, 4 , R. Geng 4, 5, 6, 7 , R. Das 1, 2, 3, 4 , M. Pham 4, 5, 6, 7 , H. Luong 4, 5, 6, 7 , T. Nguyen 4, 5, 6, 7 , A. Popescu 1, 2, 3, 4 , L. M. Woods 1, 2, 3, 4 , M. Kläui 8, 9, 10, 11 , H. Srikanth 1, 2, 3, 4 , M. H. Phan 1, 2, 3, 4
Affiliation  

Interfacing an organic semiconductor C60 with a non-magnetic metallic thin film (Cu or Pt) has created a novel heterostructure that is ferromagnetic at ambient temperature, while its interface with a magnetic metal (Fe or Co) can tune the anisotropic magnetic surface property of the material. Here, we demonstrate that sandwiching C60 in between a magnetic insulator (Y3Fe5O12:YIG) and a non-magnetic, strong spin–orbit metal (Pt) promotes highly efficient spin current transport via the thermally driven spin Seebeck effect (SSE). Experiments and first principles calculations consistently show that the presence of C60 reduces significantly the conductivity mismatch between YIG and Pt and the surface perpendicular magnetic anisotropy of YIG, giving rise to enhanced spin mixing conductance across YIG/C60/Pt interfaces. As a result, a 600% increase in the SSE voltage (VLSSE) has been realized in YIG/C60/Pt relative to YIG/Pt. Temperature-dependent SSE voltage measurements on YIG/C60/Pt with varying C60 layer thicknesses also show an exponential increase in VLSSE at low temperatures below 200 K, resembling the temperature evolution of spin diffusion length of C60. Our study emphasizes the important roles of the magnetic anisotropy and the spin diffusion length of the intermediate layer in the SSE in YIG/C60/Pt structures, providing a new pathway for developing novel spin-caloric materials.

中文翻译:

通过界面有机半导体的巨大自旋塞贝克效应

有机半导体C 60与非磁性金属薄膜(Cu或Pt)的界面产生了一种新颖的异质结构,该异质结构在环境温度下是铁磁性的,而其与磁性金属(Fe或Co)的界面可以调节各向异性的磁性表面性能材料。在这里,我们证明了将C 60夹在磁性绝缘体(Y 3 Fe 5 O 12:YIG)和非磁性强自旋轨道金属(Pt)之间可通过热驱动自旋塞贝克效应促进高效自旋电流传输(SSE)。实验和第一性原理计算始终表明,C 60的存在大大降低了YIG和Pt之间的电导率不匹配以及YIG的表面垂直磁各向异性,从而提高了YIG / C 60 / Pt界面的自旋混合电导率。结果,相对于YIG / Pt,以YIG / C 60 / Pt实现了SSE电压(V LSSE)的600%的增加。在YIG / C 60 / Pt上,随着C 60层厚度的变化,与温度相关的SSE电压测量结果还显示,在200 K以下的低温下,V LSSE呈指数增长,类似于C 60自旋扩散长度的温度演变。我们的研究强调了磁各向异性和YIG / C 60 / Pt结构中SSE中间层的自旋扩散长度的重要作用,为开发新型自旋热材料提供了新途径。
更新日期:2020-02-25
down
wechat
bug