当前位置: X-MOL 学术Transp. Res. Part C Emerg. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Estimating aircraft drag polar using open flight surveillance data and a stochastic total energy model
Transportation Research Part C: Emerging Technologies ( IF 8.3 ) Pub Date : 2020-02-26 , DOI: 10.1016/j.trc.2020.01.026
Junzi Sun , Jacco M. Hoekstra , Joost Ellerbroek

In air traffic management research, aircraft performance models are often used to generate and analyze aircraft trajectories. Although a crucial part of the aircraft performance model, the aerodynamic property of aircraft is rarely available for public research purposes, as it is protected by aircraft manufacturers for commercial reasons. In many studies, a simplified quadratic drag polar model is assumed to compute the drag of an aircraft based on the required lift. In this paper, using surveillance data, we take on the challenge of estimating the drag polar coefficients based on a novel stochastic total energy model that employs Bayesian computing. The method is based on a stochastic hierarchical modeling approach, which is made possible given accurate open aircraft surveillance data and additional analytical models from the literature. Using this proposed method, the drag polar models for 20 of the most common aircraft types are estimated and summarized. By combining additional data from the literature, we propose additional methods allowing aircraft total drag to be calculated under other configurations, such as when flaps and landing gears are deployed. We also include additional models allowing the calculation of wave drag caused by compressibility at high Mach number. Though uncertainties exist, it has been found that the estimated drag polars agree with existing models, as well as CFD simulation results. The trajectory data, performance models, and results related to this study are shared publicly.



中文翻译:

使用露天飞行监视数据和随机总能量模型估算飞机的极地阻力

在空中交通管理研究中,飞机性能模型通常用于生成和分析飞机轨迹。尽管飞机的空气动力学特性是飞机性能模型的重要组成部分,但由于其出于商业原因受到飞机制造商的保护,因此飞机的空气动力学特性很少用于公共研究。在许多研究中,都假定使用简化的二次阻力极坐标模型来基于所需升力来计算飞机的阻力。在本文中,利用监视数据,我们面临基于基于贝叶斯计算的新型随机总能量模型估算阻力极系数的挑战。该方法基于随机分层建模方法,如果有准确的开放式飞机监视数据和来自文献的其他分析模型,则可以使用该方法。使用该建议方法,可以估算和总结20种最常见飞机类型的阻力极模型。通过结合文献中的其他数据,我们提出了其他方法,可以在其他配置下(例如,部署襟翼和起落架时)计算飞机的总阻力。我们还包括其他模型,允许计算由高马赫数下的可压缩性引起的波浪阻力。尽管存在不确定性,但已发现估计的阻力极点与现有模型以及CFD模拟结果一致。与这项研究相关的轨迹数据,性能模型和结果是公开共享的。我们提出了其他方法,可以在其他配置下(例如,在部署襟翼和起落架时)计算飞机的总阻力。我们还包括其他模型,允许计算由高马赫数下的可压缩性引起的波浪阻力。尽管存在不确定性,但已发现估计的阻力极点与现有模型以及CFD模拟结果一致。与这项研究相关的轨迹数据,性能模型和结果是公开共享的。我们提出了其他方法,可以在其他配置下(例如,在部署襟翼和起落架时)计算飞机的总阻力。我们还包括其他模型,这些模型允许计算由高马赫数下的可压缩性引起的波浪阻力。尽管存在不确定性,但已发现估计的阻力极点与现有模型以及CFD模拟结果一致。与这项研究相关的轨迹数据,性能模型和结果是公开共享的。已经发现,估计的阻力极点与现有模型以及CFD仿真结果一致。与这项研究相关的轨迹数据,性能模型和结果是公开共享的。已经发现,估计的阻力极点与现有模型以及CFD仿真结果一致。与这项研究相关的轨迹数据,性能模型和结果是公开共享的。

更新日期:2020-02-26
down
wechat
bug