当前位置: X-MOL 学术Environ. Model. Softw. › 论文详情
A non-intrusive approach for efficient stochastic emulation and optimization of model-based nitrate-loading management decision support
Environmental Modelling & Software ( IF 4.552 ) Pub Date : 2020-02-25 , DOI: 10.1016/j.envsoft.2020.104657
Jeremy T. White; Matthew J. Knowling; Micheal N. Fienen; Daniel T. Feinstein; Garry W. McDonald; Catherine R. Moore

Use of physically-motivated numerical models like groundwater flow-and-transport models for probabilistic impact assessments and optimization under uncertainty (OUU) typically incurs such a computational burdensome that these tools cannot be used during decision making. The computational challenges associated with these models can be addressed through emulation. In the land-use/water-quality context, the linear relation between nitrate loading and surface-water/groundwater nitrate concentrations presents an opportunity for employing an efficient model emulator through the application of impulse-response matrices. When paired with first-order second-moment techniques, the emulation strategy gives rise to the “stochastic impulse-response emulator” (SIRE). SIRE is shown to facilitate non-intrusive, near-real time, and risk-based evaluation of nitrate-loading change scenarios, as well as nitrate-loading OUU subject to surface-water/groundwater concentration constraints in high decision variable and parameter dimensions. Two case studies are used to demonstrate SIRE in the nitrate-loading context.
更新日期:2020-02-25

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug