当前位置: X-MOL 学术ChemElectroChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
System Design Rules for Intensifying the Electrochemical Reduction of CO2 to CO on Ag Nanoparticles
ChemElectroChem ( IF 4 ) Pub Date : 2020-03-19 , DOI: 10.1002/celc.202000089
Saket S. Bhargava 1, 2 , Federica Proietto 1, 3 , Daniel Azmoodeh 1 , Emiliana R. Cofell 2, 4 , Danielle A. Henckel 1, 2, 5 , Sumit Verma 1, 2 , Christopher J. Brooks 6 , Andrew A. Gewirth 2, 5 , Paul J. A. Kenis 1, 2
Affiliation  

Electroreduction of CO2 (eCO2RR) is a potentially sustainable approach for carbon‐based chemical production. Despite significant progress, performing eCO2RR economically at scale is challenging. Here we report meeting key technoeconomic benchmarks simultaneously through electrolyte engineering and process optimization. A systematic flow electrolysis study ‐ performing eCO2RR to CO on Ag nanoparticles as a function of electrolyte composition (cations, anions), electrolyte concentration, electrolyte flow rate, cathode catalyst loading, and CO2 flow rate ‐ resulted in partial current densities of 417 and 866 mA/cm2 with faradaic efficiencies of 100 and 98 % at cell potentials of −2.5 and −3.0 V with full cell energy efficiencies of 53 and 43 %, and a conversion per pass of 17 and 36 %, respectively, when using a CsOH‐based electrolyte. The cumulative insights of this study led to the formulation of system design rules for high rate, highly selective, and highly energy efficient eCO2RR to CO.

中文翻译:

用于在银纳米颗粒上增强CO2电化学还原为CO的系统设计规则

CO 2的电还原(eCO 2 RR)是碳基化学生产的一种潜在可持续的方法。尽管取得了重大进展,但要在经济上大规模实施eCO 2 RR仍然是一项挑战。在这里,我们报告通过电解质工程和工艺优化同时达到关键的技术经济基准。一项系统的流式电解研究-在Ag纳米颗粒上对e进行eCO 2 RR对CO的变化,该变化与电解质成分(阳离子,阴离子),电解质浓度,电解质流速,阴极催化剂负载和CO 2流速有关-导致了417和866 mA / cm 2当使用基于CsOH的电解质时,在-2.5和-3.0 V的电池电势下法拉第效率分别为100和98%,全电池能量效率分别为53和43%,单次转化率分别为17和36%。这项研究的累积见识导致制定了针对高速率,高选择性和高能效eCO 2 RR的系统设计规则。
更新日期:2020-03-19
down
wechat
bug