当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
A Design-to-Device Pipeline for Data-Driven Materials Discovery.
Accounts of Chemical Research ( IF 20.832 ) Pub Date : 2020-02-25 , DOI: 10.1021/acs.accounts.9b00470
Jacqueline M Cole

The world needs new materials to stimulate the chemical industry in key sectors of our economy: environment and sustainability, information storage, optical telecommunications, and catalysis. Yet, nearly all functional materials are still discovered by "trial-and-error", of which the lack of predictability affords a major materials bottleneck to technological innovation. The average "molecule-to-market" lead time for materials discovery is currently 20 years. This is far too long for industrial needs, as highlighted by the Materials Genome Initiative, which has ambitious targets of up to 4-fold reductions in average molecule-to-market lead times. Such a large step change in progress can only be realistically achieved if one adopts an entirely new approach to materials discovery. Fortunately, a fundamentally new approach to materials discovery has been emerging, whereby data science with artificial intelligence offers a prospective solution to speed up these average molecule-to-market lead times.This approach is known as data-driven materials discovery. Its broad prospects have only recently become a reality, given the timely and major advances in "big data", artificial intelligence, and high-performance computing (HPC). Access to massive data sets has been stimulated by government-regulated open-access requirements for data and literature. Natural-language processing (NLP) and machine-learning (ML) tools that can mine data and find patterns therein are becoming mainstream. Exascale HPC capabilities that can aid data mining and pattern recognition and also generate their own data from calculations are now within our grasp. These timely advances present an ideal opportunity to develop data-driven materials-discovery strategies to systematically design and predict new chemicals for a given device application.This Account shows how data science can afford materials discovery via a four-step "design-to-device" pipeline that entails (1) data extraction, (2) data enrichment, (3) material prediction, and (4) experimental validation. Massive databases of cognate chemical and property information are first forged from "chemistry-aware" natural-language-processing tools, such as ChemDataExtractor, and enriched using machine-learning methods and high-throughput quantum-chemical calculations. New materials for a bespoke application can then be predicted by mining these databases with algorithmic encodings of relationships between chemical structures and physical properties that are known to deliver functional materials. These may take the form of classification, enumeration, or machine-learning algorithms. A data-mining workflow short-lists these predictions to a handful of lead candidate materials that go forward to experimental validation. This design-to-device approach is being developed to offer a roadmap for the accelerated discovery of new chemicals for functional applications. Case studies presented demonstrate its utility for photovoltaic, optical, and catalytic applications. While this Account is focused on applications in the physical sciences, the generic pipeline discussed is readily transferable to other scientific disciplines such as biology and medicine.
更新日期:2020-02-25

 

全部期刊列表>>
欢迎访问IOP中国网站
自然职场线上招聘会
GIANT
产业、创新与基础设施
自然科研线上培训服务
材料学研究精选
胸腔和胸部成像专题
屿渡论文,编辑服务
何川
苏昭铭
陈刚
姜涛
李闯创
李刚
北大
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
上海纽约大学
张健
陈芬儿
厦门大学
李祥
吉林大学
卓春祥
张昊
杨中悦
试剂库存
天合科研
down
wechat
bug