当前位置: X-MOL 学术Struct. Health Monit. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Real-time distortion monitoring during fused deposition modeling via acoustic emission
Structural Health Monitoring ( IF 6.6 ) Pub Date : 2019-05-24 , DOI: 10.1177/1475921719849700
Feng Li 1 , Zhonghua Yu 1 , Zhensheng Yang 2 , Xuanwei Shen 1
Affiliation  

Fused deposition modeling is a popular technique for three-dimensional prototyping since it is cost-effective, convenient to operate, and environment-friendly. However, the low quality of its printed products jeopardizes its future development. Distortion, also known as warping deformation, which is caused by many factors such as inappropriate process parameters and process drifts, is one of the most common defects in the fused deposition modeling process. Rapid detection of such part distortion during the printing process is beneficial for improving the production efficiency and saving materials. In this article, a real-time part distortion monitoring method based on acoustic emission is presented. Our work is to identify distortion defects and understand the condition of the distortion area through sensing and digital signal processing techniques. In our experiments, both the acoustic emission hits and original signals were acquired during the fused deposition modeling process. Then, the acoustic emission hits were analyzed. Ensemble empirical mode decomposition was utilized to eliminate noise and extract features from the original acoustic emission signal to further analyze the acoustic emission signal in the case of part distortion. Furthermore, the root mean square of the reconstructed signals was calculated, and the prediction results are strongly correlated with the ground truth printing states. This work provides a promising method for the quality diagnosis of printing parts.

中文翻译:

通过声发射进行熔融沉积建模过程中的实时变形监测

熔融沉积建模是一种流行的三维原型制作技术,因为它具有成本效益、操作方便和环境友好的特点。然而,其印刷产品的低质量危及其未来的发展。畸变也称为翘曲变形,由不适当的工艺参数和工艺漂移等多种因素引起,是熔融沉积建模过程中最常见的缺陷之一。在打印过程中快速检测此类零件变形,有利于提高生产效率和节省材料。本文提出了一种基于声发射的零件变形实时监测方法。我们的工作是通过传感和数字信号处理技术识别失真缺陷并了解失真区域的状况。在我们的实验中,声发射命中和原始信号都是在熔融沉积建模过程中获得的。然后,分析了声发射命中。利用集成经验模态分解消除噪声并从原始声发射信号中提取特征,进一步分析部分失真情况下的声发射信号。此外,计算了重建信号的均方根,预测结果与真实打印状态密切相关。这项工作为印刷零件的质量诊断提供了一种很有前景的方法。声发射命中和原始信号都是在熔融沉积建模过程中获得的。然后,分析了声发射命中。利用集成经验模态分解消除噪声并从原始声发射信号中提取特征,进一步分析部分失真情况下的声发射信号。此外,计算了重建信号的均方根,预测结果与真实打印状态密切相关。这项工作为印刷零件的质量诊断提供了一种很有前景的方法。声发射命中和原始信号都是在熔融沉积建模过程中获得的。然后,分析了声发射命中。利用集成经验模态分解消除噪声并从原始声发射信号中提取特征,进一步分析部分失真情况下的声发射信号。此外,计算了重建信号的均方根,预测结果与真实打印状态密切相关。这项工作为印刷零件的质量诊断提供了一种很有前景的方法。利用集成经验模态分解消除噪声并从原始声发射信号中提取特征,进一步分析部分失真情况下的声发射信号。此外,计算了重建信号的均方根,预测结果与真实打印状态密切相关。这项工作为印刷零件的质量诊断提供了一种很有前景的方法。利用集成经验模态分解消除噪声并从原始声发射信号中提取特征,进一步分析部分失真情况下的声发射信号。此外,计算了重建信号的均方根,预测结果与真实打印状态密切相关。这项工作为印刷零件的质量诊断提供了一种很有前景的方法。
更新日期:2019-05-24
down
wechat
bug