当前位置: X-MOL 学术Comput. Phys. Commun. › 论文详情
Two alternative approaches to the solution of cyclic chains in transmutation and decay problems
Computer Physics Communications ( IF 3.309 ) Pub Date : 2020-02-22 , DOI: 10.1016/j.cpc.2020.107225
Carlos Antonio Cruz López; Juan Luis François

In several burnup and activation problems there is a recurrent issue related to the singularities in the Bateman’s solution due to its inability to solve linear transmutation schemes where there are repeated isotopes, or where there are two different isotopes with the same removal coefficients. Most of these types of transmutation schemes are called cyclic chains. In these cases, the Bateman’s solution fails due to the presence of subtractions between the mentioned coefficients in some denominators, which eventually become zero and undefined. In order to overcome this problem, two methodologies have been reported in the open literature. The first one consists in introducing small modifications in the repeated removal coefficients, preventing the presence of zeros in certain denominators. The second is to develop more general equations for the Bateman’s solution. Nevertheless, both methodologies are based on the approximation of the cyclic chains with the linear chain method, whose error has not been studied until now. The study of this error is fundamental to omit cyclic chains and to reduce the execution time of the algorithm. In the present work, a more general approach to the cyclic chains was studied, starting with the description and classification of the transmutation and decay networks that generate them. Afterward, two different approaches to solve some of these structures were proposed, which are not based on the linear chain method. One of them is based on a power series analysis, and the other one is related to a numerical analysis of the roots of a polynomial in the Laplace transform space. Additionally, computer algorithms were developed for each approach to facilitate their implementation in a burnup or activation code, and a numerical comparison with the linear chain approximation was carried out. Through the present work, it was possible to compute the actual error involved when the linear chain is used for approximating cyclic chains, and to conclude if a cyclic chain can be ignored in a burnup problem.
更新日期:2020-02-22

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug