当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Low‐Thermal‐Budget Doping of 2D Materials in Ambient Air Exemplified by Synthesis of Boron‐Doped Reduced Graphene Oxide
Advanced Science ( IF 15.1 ) Pub Date : 2020-02-22 , DOI: 10.1002/advs.201903318
Jun‐Hwe Cha 1 , Dong‐Ha Kim 2 , Cheolmin Park 1 , Seon‐Jin Choi 3 , Ji‐Soo Jang 2 , Sang Yoon Yang 1 , Il‐Doo Kim 2 , Sung‐Yool Choi 1
Affiliation  

Graphene oxide (GO) doping and reduction allow for physicochemical property modification to suit practical application needs. Herein, the challenge of simultaneous low‐thermal‐budget heteroatom doping of GO and its reduction in ambient air is addressed through the synthesis of B‐doped reduced GO (B@rGO) by flash irradiation of boric acid loaded onto a GO support with intense pulsed light (IPL). The effects of light power and number of shots on the in‐depth sequential doping and reduction mechanisms are investigated by ex situ X‐ray photoelectron spectroscopy and direct millisecond‐scale temperature measurements (temperature >1600 °C, < 10‐millisecond duration, ramping rate of 5.3 × 105 °C s−1). Single‐flash IPL allows the large‐scale synthesis of substantially doped B@rGO (≈3.60 at% B) to be realized with a thermal budget 106‐fold lower than that of conventional thermal methods, and the prepared material with abundant B active sites is employed for highly sensitive and selective room‐temperature NO2 sensing. Thus, this work showcases the great potential of optical annealing for millisecond‐scale ultrafast reduction and heteroatom doping of GO in ambient air, which allows the tuning of multiple physicochemical GO properties.

中文翻译:

硼掺杂还原氧化石墨烯的合成举例说明了环境空气中二维材料的低热预算掺杂

氧化石墨烯(GO)的掺杂和还原可以理化物理化学性质,以适应实际应用需求。在这里,GO的低热预算杂原子掺杂及其在周围空气中的减少同时面临的挑战是通过将硼酸快速照射到高强度的GO载体上的硼酸的辐射合成B掺杂的还原GO(B @ rGO)来解决的。脉冲光(IPL)。通过异位X射线光电子能谱和直接毫秒级温度测量(温度> 1600°C,持续时间<10毫秒,持续时间倾斜)研究了光功率和发射次数对深度顺序掺杂和还原机制的影响速率5.3×10 5 °C s -1)。单闪IPL可以实现大规模掺杂基本上掺杂的B @ rGO(≈3.60 at%B),其热预算比传统热方法低10 6倍,并且所制备的材料具有丰富的B活性现场用于高灵敏度和选择性的室温NO 2感测。因此,这项工作展示了在环境空气中进行毫秒级超快还原和GO杂原子掺杂的光学退火的巨大潜力,从而可以调节多种物理化学GO特性。
更新日期:2020-04-21
down
wechat
bug