当前位置: X-MOL 学术Appl. Clay. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Coupling quinoline degradation with Fe redox in clay minerals: A strategy integrating biological and physicochemical processes
Applied Clay Science ( IF 5.6 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.clay.2020.105504
Liuqin Huang , Zizhang Liu , Hailiang Dong , Tian Yu , Hongchen Jiang , Yue'e Peng , Liang Shi

Abstract Quinoline is a common hazardous pollutant especially in fossil-fuel related wastewaters. Various approaches including biological degradation and physicochemical treatments (e.g., advanced oxidation processes, AOPs) have been applied for quinolone removal, however individual efficiency of these methods was usually not desirable. Here we reported that quinoline could be extensively degraded by combining biodegradation and AOPs during Fe redox cycling in the clay minerals. Four microbial consortia containing diverse functional groups of bacteria were successfully enriched from industrial coking wastewater, which were capable of reducing Fe(III) in nontronite (NAu-2) when coupled with quinoline degradation, with rates higher than those under other anaerobic condition (e.g., nitrate or sulfate reduction). Subsequent aeration of reduced Fe(II) in NAu-2 produced •OH that non-selectively oxidized quinoline. Quinoline was largely sorbed by Fe(III)-containing clay but desorbed when Fe(III) was bio-reduced, making Fe-bearing clay an easily recyclable substance for quinoline treatment. Quinoline was transformed into diverse products through several pathways during Fe(III) bioreduction and Fe(II) oxidation. Overall, our results suggest that Fe-rich clay mineral plays an important role in biological and chemical degradation of quinoline.

中文翻译:

粘土矿物中喹啉降解与铁氧化还原的耦合:一种整合生物和物理化学过程的策略

摘要 喹啉是一种常见的有害污染物,尤其是在与化石燃料相关的废水中。包括生物降解和物理化学处理(例如,高级氧化工艺,AOP)在内的各种方法已被用于去除喹诺酮,但是这些方法的单独效率通常是不理想的。在这里,我们报道了在粘土矿物中的 Fe 氧化还原循环过程中,通过将生物降解和 AOP 相结合,喹啉可以被广泛降解。从工业焦化废水中成功富集了四种含有不同功能菌群的微生物菌群,当与喹啉降解相结合时,它们能够还原绿脱石 (NAu-2) 中的 Fe(III),其还原率高于其他厌氧条件下(例如、硝酸盐或硫酸盐还原)。随后在 Nau-2 中对还原的 Fe(II) 进行曝气,产生了非选择性氧化喹啉的 •OH。喹啉在很大程度上被含 Fe(III) 的粘土吸附,但在 Fe(III) 被生物还原时解吸,使含 Fe 粘土成为一种易于回收的喹啉处理物质。在 Fe(III) 生物还原和 Fe(II) 氧化过程中,喹啉通过多种途径转化为多种产物。总的来说,我们的结果表明,富铁粘土矿物在喹啉的生物和化学降解中起着重要作用。在 Fe(III) 生物还原和 Fe(II) 氧化过程中,喹啉通过多种途径转化为多种产物。总的来说,我们的结果表明,富铁粘土矿物在喹啉的生物和化学降解中起着重要作用。在 Fe(III) 生物还原和 Fe(II) 氧化过程中,喹啉通过多种途径转化为多种产物。总的来说,我们的结果表明,富铁粘土矿物在喹啉的生物和化学降解中起着重要作用。
更新日期:2020-04-01
down
wechat
bug