当前位置: X-MOL 学术Environ. Microbiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Single-step transfer of biosynthetic operons endows a non-magnetotactic Magnetospirillum strain from wetland with magnetosome biosynthesis.
Environmental Microbiology ( IF 5.1 ) Pub Date : 2020-03-09 , DOI: 10.1111/1462-2920.14950
Marina V Dziuba 1, 2 , Theresa Zwiener 1 , Rene Uebe 1 , Dirk Schüler 1
Affiliation  

The magnetotactic lifestyle represents one of the most complex traits found in many bacteria from aquatic environments and depends on magnetic organelles, the magnetosomes. Genetic transfer of magnetosome biosynthesis operons to a non-magnetotactic bacterium has only been reported once so far, but it is unclear whether this may also occur in other recipients. Besides, several strains from magnetotactic species from freshwater, the genus Magnetospirillum of the Alphaproteobacteria also comprises a number of species lacking magnetosomes, which are abundant in diverse microbial communities. Their close phylogenetic interrelationships raise the question whether the non-magnetotactic magnetospirilla may have the potential to (re)gain a magnetotactic lifestyle upon acquisition of magnetosome genes clusters. Here we studied the transfer of magnetosome gene operons into several non-magnetotactic environmental magnetospirilla. Single-step transfer of a compact vector harbouring ˃30 major magnetosome genes from M. gryphiswaldense induced magnetosome biosynthesis in a Magnetospirillum strain from a constructed wetland. However, the resulting magnetic cellular alignment was insufficient for efficient magnetotaxis under conditions mimicking the weak geomagnetic field. Our work provides insights into possible evolutionary scenarios and potential limitations for the dissemination of magnetotaxis by horizontal gene transfer and expands the range of foreign recipients that can be genetically magnetized. This article is protected by copyright. All rights reserved.

中文翻译:

单步转移生物合成操纵子赋予了具有磁小体生物合成能力的湿地非趋磁性磁螺菌菌株。

趋磁生活方式是在许多来自水生环境的细菌中发现的最复杂的特征之一,并依赖于磁性细胞器磁小体。迄今为止,磁小体生物合成操纵子向非趋磁细菌的遗传转移只有一次,但尚不清楚是否在其他受体中也可能发生。此外,一些来自淡水的趋磁物种的菌株,即变形杆菌属的磁螺菌属也包括许多缺乏磁小体的物种,这些物种在各种微生物群落中都丰富。它们之间密切的系统发育相互关系提出了一个问题,即非趋磁趋磁螺螺菌是否可能具有在获得磁小体基因簇后重新趋磁趋向的潜力。在这里,我们研究了磁小体基因操纵子向几种非趋磁环境磁螺螺旋菌的转移。一个紧凑的载体的一步式转移,该载体携带来自格氏疟原虫的30个主要磁小体基因,可在人工湿地的磁螺菌菌株中诱导磁小体生物合成。然而,在模拟弱地磁场的条件下,所得的磁性细胞排列不足以有效地趋磁。我们的工作为通过水平基因转移传播趋磁性的可能进化场景和潜在限制提供了见识,并扩大了可被遗传磁化的外来受体的范围。本文受版权保护。版权所有。一个紧凑的载体的一步式转移,该载体携带来自格氏疟原虫的30个主要磁小体基因,可在人工湿地的磁螺菌菌株中诱导磁小体生物合成。然而,在模拟弱地磁场的条件下,所得的磁性细胞排列不足以有效地趋磁。我们的工作为通过水平基因转移传播趋磁的可能进化场景和潜在限制提供了见识,并扩大了可被遗传磁化的外来受体的范围。本文受版权保护。版权所有。一个紧凑的载体的一步式转移,该载体携带来自格氏疟原虫的30个主要磁小体基因,可在人工湿地的磁螺菌菌株中诱导磁小体生物合成。然而,在模拟弱地磁场的条件下,所得的磁性细胞排列不足以有效地趋磁。我们的工作为通过水平基因转移传播趋磁性的可能进化场景和潜在限制提供了见识,并扩大了可被遗传磁化的外来受体的范围。本文受版权保护。版权所有。在模拟弱地磁场的条件下,所产生的磁性细胞排列不足以进行有效的趋磁。我们的工作为通过水平基因转移传播趋磁性的可能进化场景和潜在限制提供了见识,并扩大了可被遗传磁化的外来受体的范围。本文受版权保护。版权所有。在模拟弱地磁场的条件下,所产生的磁性细胞排列不足以进行有效的趋磁。我们的工作为通过水平基因转移传播趋磁的可能进化场景和潜在限制提供了见识,并扩大了可被遗传磁化的外来受体的范围。本文受版权保护。版权所有。
更新日期:2020-04-01
down
wechat
bug