当前位置: X-MOL 学术Opt. Express › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improved depth resolution and depth-of-field in temporal integral imaging systems through non-uniform and curved time-lens array
Optics Express ( IF 3.8 ) Pub Date : 2020-02-19 , DOI: 10.1364/oe.382439
Farshid Shateri , Shiva Behzadfar , Zahra Kavehvash

Observing and studying the evolution of rare non-repetitive natural phenomena such as optical rogue waves or dynamic chemical processes in living cells is a crucial necessity for developing science and technologies relating to them. One indispensable technique for investigating these fast evolutions is temporal imaging systems. However, just as conventional spatial imaging systems are incapable of capturing depth information of a three-dimensional scene, typical temporal imaging systems also lack this ability to retrieve depth information—different dispersions in a complex pulse. Therefore, enabling temporal imaging systems to provide these information with great detail would add a new facet to the analysis of ultra-fast pulses. In this paper, after discussing how spatial three-dimensional integral imaging could be generalized to the time domain, two distinct methods have been proposed in order to compensate for its shortcomings such as relatively low depth resolution and limited depth-of-field. The first method utilizes a curved time-lens array instead of a flat one, which leads to an improved viewing zone and depth resolution, simultaneously. The second one which widens the depth-of-field is based on the non-uniformity of focal lengths of time-lenses in the time-lens array. It has been shown that compared with conventional setup for temporal integral imaging, depth resolution, i.e. dispersion resolvability, and depth-of-field, i.e. the range of resolvable dispersions, have been improved by a factor of 2.5 and 1.87, respectively.

中文翻译:

通过非均匀弯曲的时间透镜阵列,改进了时间积分成像系统中的深度分辨率和景深

观察和研究稀有的非重复性自然现象(例如光无赖波或活细胞中的动态化学过程)的演变,对于发展与之相关的科学技术至关重要。用于研究这些快速发展的一种必不可少的技术是时间成像系统。但是,就像常规的空间成像系统无法捕获三维场景的深度信息一样,典型的时间成像系统也缺乏这种检索深度信息的能力-复杂脉冲中的不同色散。因此,使时间成像系统能够提供非常详细的信息将为超快脉冲的分析增加新的面。本文在讨论了如何将空间三维积分成像推广到时域之后,为了弥补其诸如相对较低的深度分辨率和有限的景深之类的缺点,已经提出了两种不同的方法。第一种方法利用弯曲的时间透镜阵列而不是平坦的透镜阵列,这同时导致了改进的观察区域和深度分辨率。第二个扩大景深的方法是基于时间透镜阵列中时间透镜的焦距的不均匀性。已经表明,与用于时间积分成像的常规设置相比,深度分辨率(即色散可分辨性)和景深(即可色散的范围)分别提高了2.5倍和1.87倍。第一种方法利用弯曲的时间透镜阵列而不是平坦的透镜阵列,这同时导致了改进的观察区域和深度分辨率。第二个扩大景深的方法是基于时间透镜阵列中时间透镜的焦距的不均匀性。已经表明,与用于时间积分成像的常规设置相比,深度分辨率(即色散可分辨性)和景深(即可色散的范围)分别提高了2.5倍和1.87倍。第一种方法利用弯曲的时间透镜阵列而不是平坦的透镜阵列,这同时导致了改进的观察区域和深度分辨率。第二个扩大景深的方法是基于时间透镜阵列中时间透镜的焦距的不均匀性。已经表明,与用于时间积分成像的常规设置相比,深度分辨率(即色散可分辨性)和景深(即可色散的范围)分别提高了2.5倍和1.87倍。
更新日期:2020-03-02
down
wechat
bug