当前位置: X-MOL 学术Sol. Energy Mater. Sol. Cells › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Phosphorus treatment to promote crystallinity of the microcrystalline silicon front contact layers for highly efficient heterojunction solar cells
Solar Energy Materials and Solar Cells ( IF 6.9 ) Pub Date : 2020-06-01 , DOI: 10.1016/j.solmat.2020.110439
Chao Lei , Chen-Wei Peng , Jun Zhong , Hongyu Li , Miao Yang , Kun Zheng , Xianlin Qu , Lili wu , Cao Yu , Yuanmin Li , Xixiang Xu

Abstract The current loss is mainly due to the reflection and the parasitic absorption in the indium tin oxide (ITO) and amorphous silicon (a-Si:H) in the front side of silicon heterojunction (SHJ) solar cells. In this paper, we implemented n-type hydrogenated microcrystalline silicon oxide (n-μc-SiOx:H) as the front surface field (FSF) to improve the short-circuit current density (JSC) of SHJ solar cells. The advantage of employing n-μc-SiOx:H layer is due to its low optical absorption coefficient and tunable refractive index. However, the introduction of carbon dioxide increases light transmission but reduces the crystallinity of n-μc-SiOx:H layer. Meanwhile, inhibiting the incubation layer and increasing microcrystalline/amorphous mixture phase during the growth are critical to the solar cell performance. Therefore, we implemented a high phosphorus-doping seed layer to form a nucleation layer to improve the crystallinity of n-μc-SiOx:H layer. In addition, the plasma enhanced chemical vapor deposition (PECVD) process parameters of each layer were optimized to obtain good optical and electrical properties of n-μc-SiOx:H layer. Finally, a 242.5 cm2 solar cell had been fabricated with conversion efficiency of 23.87%, open-circuit voltage (VOC) of 739.8 mV, fill factor (FF) of 82.33% and JSC of 39.19 mA/cm2, which was 0.31 mA/cm2 higher than that of the conventional n type a-Si:H SHJ solar cells.

中文翻译:

磷处理促进高效异质结太阳能电池微晶硅前接触层的结晶度

摘要 电流损耗主要是由于硅异质结(SHJ)太阳能电池正面的氧化铟锡(ITO)和非晶硅(a-Si:H)的反射和寄生吸收造成的。在本文中,我们实施了 n 型氢化微晶氧化硅 (n-μc-SiOx:H) 作为前表面场 (FSF),以提高 SHJ 太阳能电池的短路电流密度 (JSC)。采用 n-μc-SiOx:H 层的优势在于其低光吸收系数和可调折射率。然而,二氧化碳的引入会增加透光率,但会降低 n-μc-SiOx:H 层的结晶度。同时,在生长过程中抑制孵化层和增加微晶/非晶混合相对太阳能电池性能至关重要。所以,我们实施了高磷掺杂种子层以形成成核层,以提高 n-μc-SiOx:H 层的结晶度。此外,优化了每一层的等离子体增强化学气相沉积(PECVD)工艺参数,以获得良好的 n-μc-SiOx:H 层的光学和电学性能。最后,制作了一个 242.5 cm2 的太阳能电池,转换效率为 23.87%,开路电压 (VOC) 为 739.8 mV,填充因子 (FF) 为 82.33%,JSC 为 39.19 mA/cm2,即 0.31 mA/cm2高于传统的 n 型 a-Si:H SHJ 太阳能电池。优化了每一层的等离子体增强化学气相沉积 (PECVD) 工艺参数以获得 n-μc-SiOx:H 层良好的光学和电学性能。最后,制作了一个 242.5 cm2 的太阳能电池,转换效率为 23.87%,开路电压 (VOC) 为 739.8 mV,填充因子 (FF) 为 82.33%,JSC 为 39.19 mA/cm2,即 0.31 mA/cm2高于传统的 n 型 a-Si:H SHJ 太阳能电池。对每一层的等离子体增强化学气相沉积 (PECVD) 工艺参数进行了优化,以获得 n-μc-SiOx:H 层良好的光学和电学性能。最后,制作了一个 242.5 cm2 的太阳能电池,转换效率为 23.87%,开路电压 (VOC) 为 739.8 mV,填充因子 (FF) 为 82.33%,JSC 为 39.19 mA/cm2,即 0.31 mA/cm2高于传统的 n 型 a-Si:H SHJ 太阳能电池。
更新日期:2020-06-01
down
wechat
bug