当前位置: X-MOL 学术Combust. Flame › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Large-eddy simulation of dual-fuel spray ignition at different ambient temperatures
Combustion and Flame ( IF 4.4 ) Pub Date : 2020-05-01 , DOI: 10.1016/j.combustflame.2020.01.017
Bulut Tekgül , Heikki Kahila , Ossi Kaario , Ville Vuorinen

Abstract Here, a finite-rate chemistry large-eddy simulation (LES) solver is utilized to investigate dual-fuel (DF) ignition process of n-dodecane spray injection into a methane–air mixture at engine-relevant ambient temperatures. The investigated configurations correspond to single-fuel (SF) ϕ CH 4 = 0 and DF ϕ CH 4 = 0.5 conditions for a range of temperatures. The simulation setup is a continuation of the work by Kahila et al. (2019, Combustion and Flame) with the baseline SF spray setup corresponding to the Engine Combustion Network (ECN) Spray A configuration. First, ignition is investigated at different ambient temperatures in 0D and 1D studies in order to isolate the effect of chemistry and chemical mechanism selection to ignition delay time (IDT). Second, 3D LES of SF and DF sprays at three different ambient temperatures is carried out. Third, a reaction sensitivity analysis is performed to investigate the effect of ambient temperature on the most sensitive reactions. The main findings of the paper are as follows: (1) DF ignition characteristics depend on the choice of chemical mechanism, particularly at lower temperatures. (2) Addition of methane to the ambient mixture delays ignition, and this effect is the strongest at lower temperatures. (3) While the inhibiting effect of methane on low- and high-temperature IDT’s is evident, the time difference between these two stages is shown to be only slightly dependent on temperature. (4) Reaction sensitivity analysis indicates that reactions related to methane oxidation are more pronounced at lower temperatures. The provided quantitative results indicate the strong ambient temperature sensitivity of the DF ignition process.

中文翻译:

不同环境温度下双燃料喷雾点火的大涡模拟

摘要 在这里,有限速率化学大涡模拟 (LES) 求解器用于研究在发动机相关环境温度下将正十二烷喷雾喷射到甲烷-空气混合物中的双燃料 (DF) 点火过程。研究的配置对应于单燃料 (SF) ϕ CH 4 = 0 和 DF ϕ CH 4 = 0.5 条件下的一系列温度。模拟设置是 Kahila 等人工作的延续。(2019, Combustion and Flame) 具有与发动机燃烧网络 (ECN) 喷雾 A 配置相对应的基线 SF 喷雾设置。首先,在 0D 和 1D 研究中研究了在不同环境温度下的点火,以隔离化学和化学机制选择对点火延迟时间 (IDT) 的影响。其次,在三种不同的环境温度下进行 SF 和 DF 喷雾的 3D LES。第三,进行反应敏感性分析以研究环境温度对最敏感反应的影响。该论文的主要发现如下: (1) DF 点火特性取决于化学机制的选择,尤其是在较低温度下。(2) 向环境混合物中加入甲烷会延迟点火,这种影响在较低温度下最强。(3) 虽然甲烷对低温和高温 IDT 的抑制作用是明显的,但这两个阶段之间的时间差仅与温度略有相关。(4) 反应敏感性分析表明,与甲烷氧化相关的反应在较低温度下更为明显。提供的定量结果表明 DF 点火过程对环境温度非常敏感。进行反应敏感性分析以研究环境温度对最敏感反应的影响。该论文的主要发现如下: (1) DF 点火特性取决于化学机制的选择,尤其是在较低温度下。(2) 向环境混合物中添加甲烷会延迟点火,这种影响在较低温度下最强。(3) 虽然甲烷对低温和高温 IDT 的抑制作用是明显的,但这两个阶段之间的时间差仅与温度略有相关。(4) 反应敏感性分析表明,与甲烷氧化相关的反应在较低温度下更为明显。提供的定量结果表明 DF 点火过程对环境温度具有很强的敏感性。进行反应敏感性分析以研究环境温度对最敏感反应的影响。该论文的主要发现如下: (1) DF 点火特性取决于化学机制的选择,尤其是在较低温度下。(2) 向环境混合物中加入甲烷会延迟点火,这种影响在较低温度下最强。(3) 虽然甲烷对低温和高温 IDT 的抑制作用是明显的,但这两个阶段之间的时间差仅与温度略有相关。(4) 反应敏感性分析表明,与甲烷氧化相关的反应在较低温度下更为明显。提供的定量结果表明 DF 点火过程对环境温度具有很强的敏感性。
更新日期:2020-05-01
down
wechat
bug