当前位置: X-MOL 学术Trends Anal. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanozymes-based biosensors for food quality and safety
Trends in Analytical Chemistry ( IF 13.1 ) Pub Date : 2020-02-13 , DOI: 10.1016/j.trac.2020.115841
Weizheng Wang , Sundaram Gunasekaran

Nanozymes are nanomaterials, both metallic and non-metallic, that have the ability to catalyze biochemical reactions just as natural enzymes do. Since their discovery in 2007, nanozymes are exploited as nanoscale enzymatic mimics, which are now at the forefront for various biosensing applications. Compared with natural enzymes, nanozymes offer several advantages such as relatively higher stability, lower cost, easier modification, and inherently more efficient. Past research on the structure and catalytic principles of nanozymes has brought into focus various developments of nanozyme-based biosensors. Herein we introduce several typical nanozymes, primarily those belonging to the peroxidase and oxidase families. The enzyme mimicking mechanisms of these nanozymes are presented, which primarily result in colorimetric signals suitable for simple and easy biosensing. Emphasis is placed on nanozyme-based biosensors for detecting chemical contaminants, such as ions and pesticide residues, and biological contaminants, such as pathogens and biotoxins, that can compromise food quality and safety. In the future, more optimizations and improvements could be in the structure of nanozymes to enhance their catalysis ability and specificity. Overall, nanozymes possess great potential for biosensing in food and non-food applications.



中文翻译:

基于纳米酶的生物传感器,可提高食品质量和安全性

纳米酶是金属和非金属的纳米材料,就像天然酶一样,它们具有催化生化反应的能力。自从2007年发现纳米酶以来,纳米酶就被用作纳米级酶模拟物,目前在各种生物传感应用中处于前沿。与天然酶相比,纳米酶具有多个优点,例如相对较高的稳定性,较低的成本,更易于修饰以及本质上更有效。过去对纳米酶的结构和催化原理的研究已使基于纳米酶的生物传感器的各种发展成为焦点。在这里,我们介绍几种典型的纳米酶,主要是那些属于过氧化物酶和氧化酶家族的酶。提出了这些纳米酶的酶模拟机制,主要产生比色信号,适用于简单而轻松的生物传感。重点放在基于纳米酶的生物传感器上,以检测可能损害食品质量和安全性的化学污染物(例如离子和农药残留)以及生物污染物(例如病原体和生物毒素)。将来,可以对纳米酶的结构进行更多的优化和改进,以增强其催化能力和特异性。总体而言,纳米酶在食品和非食品应用中具有巨大的生物传感潜力。可以对纳米酶的结构进行更多的优化和改进,以增强其催化能力和特异性。总体而言,纳米酶在食品和非食品应用中具有巨大的生物传感潜力。可以对纳米酶的结构进行更多的优化和改进,以增强其催化能力和特异性。总体而言,纳米酶在食品和非食品应用中具有巨大的生物传感潜力。

更新日期:2020-02-20
down
wechat
bug