当前位置: X-MOL 学术Nat. Rev. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Methanogenesis involves direct hydride transfer from H 2 to an organic substrate
Nature Reviews Chemistry ( IF 36.3 ) Pub Date : 2020-02-20 , DOI: 10.1038/s41570-020-0167-2
Gangfeng Huang 1 , Tristan Wagner 2 , Ulrich Ermler 3 , Seigo Shima 1
Affiliation  

Certain anaerobic microorganisms evolved a mechanism to use H2 as a reductant in their energy metabolisms. For these purposes, the microorganisms developed H2-activating enzymes, which are aspirational catalysts in a sustainable hydrogen economy. In the case of the hydrogenotrophic pathway performed by methanogenic archaea, 8e are extracted from 4H2 and used as reducing equivalents to convert CO2 into CH4. Under standard cultivation conditions, these archaea express [NiFe]-hydrogenases, which are Ni-dependent and Fe-dependent enzymes and heterolytically cleave H2 into 2H+ and 2e, the latter being supplied into the central metabolism. Under Ni-limiting conditions, F420-reducing [NiFe]-hydrogenases are downregulated and their functions are predominantly taken over by an upregulated [Fe]-hydrogenase. Unique in biology, this Fe-dependent hydrogenase cleaves H2 and directly transfers H to an imidazolium-containing substrate. [Fe]-hydrogenase activates H2 at an Fe cofactor ligated by two CO molecules, an acyl group, a pyridinol N atom and a cysteine thiolate as the central constituent. This Fe centre has inspired chemists to not only design synthetic mimics to catalytically cleave H2 in solution but also for incorporation into apo-[Fe]-hydrogenase to give semi-synthetic proteins. This Perspective describes the enzymes involved in hydrogenotrophic methanogenesis, with a focus on those performing the reduction steps. Of these, we describe [Fe]-hydrogenases in detail and cover recent progress in their synthetic modelling.



中文翻译:

产甲烷涉及从 H 2 到有机底物的直接氢化物转移

某些厌氧微生物进化出一种机制,在它们的能量代谢中使用 H 2作为还原剂。出于这些目的,微生物开发了 H 2激活酶,它们是可持续氢经济中的理想催化剂。在产甲烷古菌执行的氢营养途径的情况下,8e -从4H 2中提取并用作还原当量以将CO 2转化为CH 4。在标准培养条件下,这些古细菌表达 [NiFe]-氢化酶,它们是 Ni 依赖性和 Fe 依赖性酶,并且将 H 2异裂解为 2H +和 2e -,后者被供应到中央代谢。在 Ni 限制条件下,F 420还原 [NiFe]-氢化酶被下调,它们的功能主要由上调的 [Fe]-氢化酶接管。这种 Fe 依赖性氢化酶在生物学上是独一无二的,它可以裂解 H 2并将 H -直接转移到含咪唑底物上。[Fe]-氢化酶在由两个 CO 分子、一个酰基、一个吡啶醇 N 原子和作为中心成分的半胱氨酸硫醇盐连接的 Fe 辅助因子处激活 H 2 。这个 Fe 中心启发了化学家不仅设计合成模拟物来催化裂解 H 2在溶液中也可掺入 apo-[Fe]-氢化酶以产生半合成蛋白质。该观点描述了参与氢营养型甲烷生成的酶,重点是那些执行还原步骤的酶。其中,我们详细描述了 [Fe]-氢化酶,并介绍了它们合成模型的最新进展。

更新日期:2020-02-20
down
wechat
bug