当前位置: X-MOL 学术Mol. Cell. Probes › 论文详情
Fibroblast growth factor-2 ameliorates tumor necrosis factor-alpha-induced osteogenic damage of human bone mesenchymal stem cells by improving oxidative phosphorylation.
Molecular and Cellular Probes ( IF 2.511 ) Pub Date : 2020-02-18 , DOI: 10.1016/j.mcp.2020.101538
Yishan Hao,Minting Wu,Jinming Wang

Tumor necrosis factor-alpha (TNF-α) has been shown to have an inhibitory effect on the osteogenic differentiation of mesenchymal stem cells. The metabolic switch from glycolysis to oxidative phosphorylation (OXPHOS) is vital for energy supply during osteogenic differentiation. However, the metabolic switch is inhibited under inflammatory stimulation. FGF2 has shown that it can improve osteogenic differentiation and promote autoimmune inflammation. In this study, we investigated whether FGF2 can ameliorate TNF-a-inhibited osteogenic damage by improving OXPHOS. Effects of TNF-α or FGF2 on the proliferation and osteogenic differentiation of hBMSCs were evaluated by MTT assay, qRT-PCR, and ALP activity tests. The function of FGF2 on the TNF-a-inhibited metabolic switch was determined by Mito Stress test. The results showed that TNF-α was able to inhibit the osteogenic differentiation and OXPHOS of hBMSCs. FGF2 has no obvious function in improving the osteogenic-related genes, but it can ameliorate the impaired osteogenesis and OCR value caused by TNF-α. These findings suggest that FGF2 can prevent the impaired osteogenic differentiation and metabolic switch of hBMSCs under inflammatory stimulation, which might enhance the regeneration capacity of hBMSCs.
更新日期:2020-02-18

 

全部期刊列表>>
如何通过Nature平台传播科研成果
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
中洪博元
ACS材料视界
x-mol收录
南开大学
朱守非
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug