当前位置: X-MOL 学术Geochim. Cosmochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sulfur and copper isotopic signatures of chalcopyrite at Kalatongke and Baishiquan: insights into the origin of magmatic Ni-Cu sulfide deposits
Geochimica et Cosmochimica Acta ( IF 5 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.gca.2020.02.015
Dongmei Tang , Kezhang Qin , Benxun Su , Yajing Mao , Noreen J. Evans , Yanjie Niu , Zhen Kang

Abstract Sulfide Cu isotope systematic has been used as a metallogenic tracer in various deposits; however, only rarely in magmatic Ni-Cu sulfide deposits. Here we present chalcopyrite δ34S and δ65Cu data for the Kalatongke and Baishiquan Ni-Cu sulfide deposits in the Central Asian Orogenic Belt. The Kalatongke deposit yields δ34S of −3.99‰ to 3.30‰ and δ65Cu of −1.32‰ to 0.07‰, whereas chalcopyrite from the Baishiquan deposit has δ34S values ranging from 1.70‰ to 4.98‰ and δ65Cu from −0.40‰ to 0.59‰. These isotopic ratios show no correlation with intrusion/orebody shape, location of sample in the orebody, lithofacies or type of mineralization. Based on Kalatongke and Baishiquan δ34S data, our multicomponent modeling suggests that, with an increase in the relative crustal component contribution, the measured δ34S values in sulfide ores approach the value of the contaminant. Mass ratios (R′) of silicate magma/(xenomelt + sulfide xenomelt + resitite + crystalline olivine) of 250–800 in the Kalatongke and 10–1000 in the Baishiquan deposit, yield δ34S values of −1.78‰ to 1.74‰ and 1.70‰ to 4.98‰ in these deposits. Contamination by host tuff and shale material with δ34S values of −7.2‰ to 3.3‰ reasonably explains the negative δ34S in the Kalatongke ores. A lack of correlation between the Kalatongke and Baishiquan chalcopyrite δ65Cu values and Cu or S contents (or Cu/Ni ratios) indicates that Cu isotopic fractionation was not controlled by sulfide fractional crystallization, but instead by contamination and the mantle source. Multicomponent modeling shows that an R′ factor between 10 and 1000 can reproduce most δ65Cu signatures in sulfide ores from the Kalatongke and Baishiquan deposits, with the exception of a few negative δ65Cu values. Undetected contamination and heterogeneous mantle resulting from different degrees of partial melting and metasomatism in the mantle source may explain these negative values and the wide range of δ65Cu noted in magmatic sulfide deposits worldwide. The Cu and S isotopes in sulfide from the magmatic Ni-Cu sulfide deposits can be utilized as indicators of crustal contamination and the nature of the mantle source.

中文翻译:

喀拉通克和白石泉黄铜矿的硫和铜同位素特征:对岩浆镍铜硫化物矿床成因的洞察

摘要 硫化铜同位素系统已被用作各种矿床的成矿示踪剂;然而,在岩浆镍铜硫化物矿床中很少见。在这里,我们提供了中亚造山带卡拉通克和白石泉镍铜硫化物矿床的黄铜矿 δ34S 和 δ65Cu 数据。喀拉通克矿床的δ34S为-3.99‰至3.30‰,δ65Cu为-1.32‰至0.07‰,而白石泉矿床的黄铜矿δ34S值为1.70‰至4.98‰,δ65Cu为-0.59‰至.‰ 这些同位素比值与侵入体/矿体形状、矿体中样品的位置、岩相或成矿类型没有相关性。基于喀拉通克和白石泉δ34S数据,我们的多分量建模表明,随着相对地壳分量贡献的增加,硫化矿中测得的 δ34S 值接近污染物的值。喀拉通克矿床硅酸盐岩浆/(硫化物镍熔体+磷灰石+结晶橄榄石)质量比(R')为250-800,白石泉矿床为10-1000,δ34S值为-1.78‰~1.74‰和1.70‰。在这些矿床中达到 4.98‰。δ34S值为-7.2‰至3.3‰的寄主凝灰岩和页岩材料的污染合理地解释了喀拉通克矿中δ34S为负值。卡拉通克和白石泉黄铜矿 δ65Cu 值与 Cu 或 S 含量(或 Cu/Ni 比)之间缺乏相关性表明,Cu 同位素分馏不受硫化物分馏结晶控制,而是受污染和地幔源控制。多组分模型表明,除了少数负的 δ65Cu 值外,10 到 1000 之间的 R' 因子可以再现喀拉通克和白石泉矿床硫化矿中的大部分 δ65Cu 特征。地幔源中不同程度的部分熔融和交代作用导致的未检测到的污染和异质地幔可能解释了这些负值以及在全球岩浆硫化物矿床中观察到的 δ65Cu 的广泛范围。来自岩浆镍铜硫化物矿床的硫化物中的铜和硫同位素可用作地壳污染和地幔源性质的指标。地幔源中不同程度的部分熔融和交代作用导致的未检测到的污染和异质地幔可能解释了这些负值以及在全球岩浆硫化物矿床中观察到的 δ65Cu 的广泛范围。来自岩浆镍铜硫化物矿床的硫化物中的铜和硫同位素可用作地壳污染和地幔源性质的指标。地幔源中不同程度的部分熔融和交代作用导致的未检测到的污染和异质地幔可能解释了这些负值以及在全球岩浆硫化物矿床中观察到的 δ65Cu 的广泛范围。来自岩浆镍铜硫化物矿床的硫化物中的铜和硫同位素可用作地壳污染和地幔源性质的指标。
更新日期:2020-04-01
down
wechat
bug