当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
Cover Combinatorial Filters and their Minimization Problem
arXiv - CS - Discrete Mathematics Pub Date : 2020-02-15 , DOI: arxiv-2002.07153
Yulin Zhang; Dylan A. Shell

A recent research theme has been the development of automatic methods to minimize robots' resource footprints. In particular, the class of combinatorial filters (discrete variants of widely-used probabilistic estimators) has been studied and methods developed for automatically reducing their space requirements. This paper extends existing combinatorial filters by introducing a natural generalization that we dub cover combinatorial filters. In addressing the new---but still NP-complete---problem of minimization of cover filters, this paper shows that three of the concepts previously believed to be true about combinatorial filters (and actually conjectured, claimed, or assumed to be) are in fact false. For instance, minimization does not induce an equivalence relation. We give an exact algorithm for the cover filter minimization problem. Unlike prior work (based on graph coloring) we consider a type of clique-cover problem, involving a new conditional constraint, from which we can find more general relations. In addition to solving the more general problem, the algorithm we present also corrects flaws present in all prior filter reduction methods. The algorithm also forms a promising basis for practical future development as it involves a reduction to SAT.
更新日期:2020-02-19

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug