当前位置: X-MOL 学术Microb. Cell Fact. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Metabolic engineering of carbohydrate metabolism systems in Corynebacterium glutamicum for improving the efficiency of L-lysine production from mixed sugar.
Microbial Cell Factories ( IF 6.4 ) Pub Date : 2020-02-18 , DOI: 10.1186/s12934-020-1294-7
Jian-Zhong Xu 1 , Hao-Zhe Ruan 1 , Hai-Bo Yu 1 , Li-Ming Liu 2 , Weiguo Zhang 1
Affiliation  

The efficiency of industrial fermentation process mainly depends on carbon yield, final titer and productivity. To improve the efficiency of L-lysine production from mixed sugar, we engineered carbohydrate metabolism systems to enhance the effective use of sugar in this study. A functional metabolic pathway of sucrose and fructose was engineered through introduction of fructokinase from Clostridium acetobutylicum. L-lysine production was further increased through replacement of phosphoenolpyruvate-dependent glucose and fructose uptake system (PTSGlc and PTSFru) by inositol permeases (IolT1 and IolT2) and ATP-dependent glucokinase (ATP-GlK). However, the shortage of intracellular ATP has a significantly negative impact on sugar consumption rate, cell growth and L-lysine production. To overcome this defect, the recombinant strain was modified to co-express bifunctional ADP-dependent glucokinase (ADP-GlK/PFK) and NADH dehydrogenase (NDH-2) as well as to inactivate SigmaH factor (SigH), thus reducing the consumption of ATP and increasing ATP regeneration. Combination of these genetic modifications resulted in an engineered C. glutamicum strain K-8 capable of producing 221.3 ± 17.6 g/L L-lysine with productivity of 5.53 g/L/h and carbon yield of 0.71 g/g glucose in fed-batch fermentation. As far as we know, this is the best efficiency of L-lysine production from mixed sugar. This is also the first report for improving the efficiency of L-lysine production by systematic modification of carbohydrate metabolism systems.

中文翻译:

谷氨酸棒杆菌中碳水化合物代谢系统的代谢工程,可提高混合糖生产L-赖氨酸的效率。

工业发酵过程的效率主要取决于碳产量,最终滴定度和生产率。为了提高混合糖生产L-赖氨酸的效率,我们设计了碳水化合物代谢系统以增强糖的有效利用。通过从丙酮丁醇梭菌中引入果糖激酶来设计蔗糖和果糖的功能性代谢途径。通过肌醇通透酶(IolT1和IolT2)和ATP依赖性葡萄糖激酶(ATP-GlK)替代磷酸烯醇丙酮酸依赖性葡萄糖和果糖摄取系统(PTSGlc和PTSFru),可以进一步提高L-赖氨酸的产量。但是,细胞内ATP的缺乏对糖的消耗速率,细胞生长和L-赖氨酸的产生有明显的负面影响。为了克服这个缺陷,重组菌株经过修饰以共表达双功能ADP依赖性葡萄糖激酶(ADP-GlK / PFK)和NADH脱氢酶(NDH-2)以及灭活SigmaH因子(SigH),从而减少了ATP的消耗并增加了ATP的再生。这些基因修饰的结合导致工程改造的谷氨酸棒杆菌菌株K-8能够生产221.3±17.6 g / L L-赖氨酸,生产力为5.53 g / L / h,碳收率为0.71 g / g葡萄糖发酵。据我们所知,这是从混合糖生产L-赖氨酸的最佳效率。这也是通过碳水化合物代谢系统的系统改良来提高L-赖氨酸生产效率的第一份报告。因此减少了ATP的消耗并增加了ATP的再生。这些遗传修饰的结合产生了工程化的谷氨酸棒杆菌菌株K-8,该菌株能够生产221.3±17.6 g / L L-赖氨酸,生产力为5.53 g / L / h,碳收率为0.71 g / g葡萄糖发酵。据我们所知,这是从混合糖生产L-赖氨酸的最佳效率。这也是通过碳水化合物代谢系统的系统改良来提高L-赖氨酸生产效率的第一份报告。因此减少了ATP的消耗并增加了ATP的再生。这些遗传修饰的结合产生了工程化的谷氨酸棒杆菌菌株K-8,该菌株能够生产221.3±17.6 g / L L-赖氨酸,生产力为5.53 g / L / h,碳收率为0.71 g / g葡萄糖发酵。据我们所知,这是从混合糖生产L-赖氨酸的最佳效率。这也是关于通过碳水化合物代谢系统的系统改良来提高L-赖氨酸生产效率的第一份报告。据我们所知,这是从混合糖生产L-赖氨酸的最佳效率。这也是关于通过碳水化合物代谢系统的系统改良来提高L-赖氨酸生产效率的第一份报告。据我们所知,这是从混合糖生产L-赖氨酸的最佳效率。这也是关于通过碳水化合物代谢系统的系统改良来提高L-赖氨酸生产效率的第一份报告。
更新日期:2020-04-22
down
wechat
bug