当前位置: X-MOL 学术ACS Omega › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Designing All-Polymer Nanostructured Solid Electrolytes: Advances and Prospects.
ACS Omega ( IF 4.1 ) Pub Date : 2020-02-10 , DOI: 10.1021/acsomega.9b04098
Emmanouil Glynos 1 , Christos Pantazidis 2 , Georgios Sakellariou 2
Affiliation  

Multi-phase nanostructured polymer electrolytes, where the one phase conducts ions while the other imparts the desired mechanical properties, are currently the most promising candidates for solid-state electrolytes in high-density lithium metal batteries. In contrast to homogeneous polymer electrolytes, where ion transport is coupled with polymer segmental dynamics and any attempt to improve conductivity via faster polymer motions results in a decrease in stiffness, nanostructured materials efficiently decouple these two antagonistic parameters. Nevertheless, for reasons discussed herein the synthesis of a polymer electrolyte that simultaneously has a shear modulus of G' ≈ GPa and an ion conductivity of σ > 10-4 S/cm (in the case dual ion conductor) or of σ > 10-5 S/cm (in the case of single-ion conductor) remains a challenge. This review focuses on recent designing strategies for the synthesis of all-polymer nanostructured electrolytes, and protocols for introducing a single-ion character in such materials.

中文翻译:

设计全聚合物纳米结构固体电解质:研究进展与展望。

目前,多相纳米结构聚合物电解质是高密度锂金属电池中固态电解质最有希望的候选者,其中一相传导离子,而另一相则赋予所需的机械性能。与均质聚合物电解质相反,在离子电解质中,离子传输与聚合物链段动力学相关联,并且任何试图通过更快的聚合物运动来提高电导率的尝试都会导致刚度降低,而纳米结构材料则有效地将这两个拮抗参数解耦。然而,出于本文讨论的原因,聚合物电解质的合成同时具有G'≈GPa的剪切模量和σ> 10-4 S / cm(在双离子导体的情况下)或σ> 10- 5 S / cm(对于单离子导体)仍然是一个挑战。
更新日期:2020-02-18
down
wechat
bug