当前位置: X-MOL 学术ACS Omega › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancement of Both Faraday and Kerr Effects with an All-Dielectric Grating Based on a Magneto-Optical Nanocomposite Material.
ACS Omega ( IF 4.1 ) Pub Date : 2020-02-04 , DOI: 10.1021/acsomega.9b03728
François Royer 1 , Bobin Varghese 1 , Emilie Gamet 1 , Sophie Neveu 2 , Yves Jourlin 1 , Damien Jamon 1
Affiliation  

We report on the design, fabrication, and characterization of an all-dielectric one-dimensional (1D) resonant device formed by a silicon nitride grating impregnated by a low-index magneto-optical silica-type matrix. This impregnation is realized through the dipping of the 966 nm periodic template in a sol-gel solution previously doped with CoFe2O4 nanoparticles, and able to fill the grating slits. By a proper adjustment of the geometrical parameters of such a photonic crystal membrane, simultaneous excitation of transverse electric (TE) and transverse magnetic (TM) polarization resonances is nearly achieved at 1570 nm. This TE/TM phase-matching situation leads to a fivefold enhancement of the Faraday effect in the resonance area with an increased merit factor of 0.32°. Moreover, the device demonstrates its ability to enhance longitudinal and transverse Kerr effects for the other directions of the applied magnetic field. Taking benefits from the ability of the nanocomposite material to be processed on photonic platforms, and despite its quite low magneto-optical activity compared to classical magnetic materials, this work proves that an all-dielectric 1D device can produce a high magneto-optical sensitivity to every magnetic field directions.

中文翻译:

基于磁光纳米复合材料的全介电光栅增强法拉第和Kerr效应。

我们报告的设计,制作,和表征的全电介质一维(1D)谐振器件由低折射率磁光二氧化硅型矩阵浸渍的氮化硅光栅形成的。这种浸渍是通过将966 nm周期性模板浸入预先掺杂有CoFe2O4纳米粒子并能够填充光栅狭缝的溶胶-凝胶溶液中来实现的。通过适当调节这种光子晶体膜的几何参数,可以在1570 nm处几乎同时激发横向电(TE)和横向磁(TM)极化共振。这种TE / TM相位匹配情况导致共振区域的法拉第效应提高了五倍,而品质因数却提高了0.32°。此外,该设备展示了其在施加磁场的其他方向上增强纵向和横向Kerr效应的能力。受益于纳米复合材料在光子平台上的处理能力,并且尽管与经典磁性材料相比其磁光活性很低,但这项工作证明了全电介质一维器件可以产生高的磁光灵敏度。每个磁场方向。
更新日期:2020-02-18
down
wechat
bug