当前位置: X-MOL 学术ACS Omega › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular and Coarse-Grained Modeling to Characterize and Optimize Dendrimer-Based Nanocarriers for Short Interfering RNA Delivery.
ACS Omega ( IF 4.1 ) Pub Date : 2020-02-07 , DOI: 10.1021/acsomega.9b03908
Filip Stojceski 1 , Gianvito Grasso 1 , Lorenzo Pallante 2 , Andrea Danani 1
Affiliation  

Dendrimer nanocarriers are unique hyper-branched polymers with biomolecule-like properties, representing a promising prospect as a nucleic acid delivery system. The design of effective dendrimer-based gene carriers requires considering several parameters, such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity. In detail, the rational design of the dendrimer surface chemistry has been ascertained to play a crucial role on the efficiency of interaction with nucleic acids. Within this framework, advances in the field of organic chemistry have allowed us to design dendrimers with even small difference in the chemical structure of their surface terminals. In this study, we have selected two different cationic phosphorus dendrimers of generation 3 functionalized, respectively, with pyrrolidinium (DP) and morpholinium (DM) surface groups, which have demonstrated promising potential for short interfering RNA (siRNA) delivery. Despite DP and DM differing only for one atom in their chemical structure, in vitro and in vivo experiments have highlighted several differences between them in terms of siRNA complexation properties. In this context, we have employed coarse-grained molecular dynamics simulation techniques to shed light on the supramolecular characteristics of dendrimer-siRNA complexation, the so-called dendriplex formations. Our data provide important information on self-assembly dynamics driven by surface chemistry and competition mechanisms.

中文翻译:

分子和粗粒化建模,以表征和优化基于树状聚合物的纳米载体,用于短干扰RNA的传递。

树枝状聚合物纳米载体是独特的超支化聚合物,具有类似生物分子的特性,作为核酸输送系统具有广阔的前景。有效的基于树状大分子的基因载体的设计需要考虑几个参数,例如载体的形态,大小,分子量,表面化学性质和柔韧性/刚性。详细地,已经确定树枝状聚合物表面化学的合理设计在与核酸相互作用的效率中起关键作用。在此框架内,有机化学领域的进步使我们能够设计树枝状大分子,其表面末端的化学结构差异很小。在这项研究中,我们选择了两种分别功能化的第三代阳离子磷树枝状聚合物,具有吡咯烷鎓(DP)和吗啉鎓(DM)表面基团,已证明它们具有短干扰RNA(siRNA)递送的潜力。尽管DP和DM在化学结构上仅一个原子有所不同,但体外和体内实验还是突出了siRNA络合特性方面的一些差异。在这种情况下,我们采用了粗粒度的分子动力学模拟技术来阐明树枝状聚合物-siRNA络合的超分子特征,即所谓的树枝状复合物形成。我们的数据提供了有关由表面化学和竞争机制驱动的自组装动力学的重要信息。尽管DP和DM在化学结构上仅一个原子有所不同,但体外和体内实验还是突出了siRNA络合特性方面的一些差异。在这种情况下,我们采用了粗粒度的分子动力学模拟技术来阐明树枝状聚合物-siRNA络合的超分子特征,即所谓的树枝状复合物形成。我们的数据提供了有关由表面化学和竞争机制驱动的自组装动力学的重要信息。尽管DP和DM在化学结构上仅一个原子有所不同,但体外和体内实验还是突出了siRNA络合特性方面的一些差异。在这种情况下,我们采用了粗粒度的分子动力学模拟技术来阐明树枝状聚合物-siRNA络合的超分子特征,即所谓的树枝状复合物形成。我们的数据提供了有关由表面化学和竞争机制驱动的自组装动力学的重要信息。所谓的树枝状结构。我们的数据提供了有关由表面化学和竞争机制驱动的自组装动力学的重要信息。所谓的树枝状结构。我们的数据提供了有关由表面化学和竞争机制驱动的自组装动力学的重要信息。
更新日期:2020-02-18
down
wechat
bug