当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
Generating clause sequences of a CNF formula
arXiv - CS - Discrete Mathematics Pub Date : 2020-02-17 , DOI: arxiv-2002.06727
Kristóf Bérczi; Endre Boros; Ondřej Čepek; Khaled Elbassioni; Petr Kučera; Kazuhisa Makino

Given a CNF formula $\Phi$ with clauses $C_1,\ldots,C_m$ and variables $V=\{x_1,\ldots,x_n\}$, a truth assignment $a:V\rightarrow\{0,1\}$ of $\Phi$ leads to a clause sequence $\sigma_\Phi(a)=(C_1(a),\ldots,C_m(a))\in\{0,1\}^m$ where $C_i(a) = 1$ if clause $C_i$ evaluates to $1$ under assignment $a$, otherwise $C_i(a) = 0$. The set of all possible clause sequences carries a lot of information on the formula, e.g. SAT, MAX-SAT and MIN-SAT can be encoded in terms of finding a clause sequence with extremal properties. We consider a problem posed at Dagstuhl Seminar 19211 "Enumeration in Data Management" (2019) about the generation of all possible clause sequences of a given CNF with bounded dimension. We prove that the problem can be solved in incremental polynomial time. We further give an algorithm with polynomial delay for the class of tractable CNF formulas. We also consider the generation of maximal and minimal clause sequences, and show that generating maximal clause sequences is NP-hard, while minimal clause sequences can be generated with polynomial delay.
更新日期:2020-02-18

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
香港大学化学系刘俊治
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug