当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
A Unifying Framework for Spectrum-Preserving Graph Sparsification and Coarsening
arXiv - CS - Discrete Mathematics Pub Date : 2019-02-26 , DOI: arxiv-1902.09702
Gecia Bravo-Hermsdorff; Lee M. Gunderson

How might one "reduce" a graph? That is, generate a smaller graph that preserves the global structure at the expense of discarding local details? There has been extensive work on both graph sparsification (removing edges) and graph coarsening (merging nodes, often by edge contraction); however, these operations are currently treated separately. Interestingly, for a planar graph, edge deletion corresponds to edge contraction in its planar dual (and more generally, for a graphical matroid and its dual). Moreover, with respect to the dynamics induced by the graph Laplacian (e.g., diffusion), deletion and contraction are physical manifestations of two reciprocal limits: edge weights of $0$ and $\infty$, respectively. In this work, we provide a unifying framework that captures both of these operations, allowing one to simultaneously sparsify and coarsen a graph while preserving its large-scale structure. The limit of infinite edge weight is rarely considered, as many classical notions of graph similarity diverge. However, its algebraic, geometric, and physical interpretations are reflected in the Laplacian pseudoinverse $\mathbf{\mathit{L}}^{\dagger}$, which remains finite in this limit. Motivated by this insight, we provide a probabilistic algorithm that reduces graphs while preserving $\mathbf{\mathit{L}}^{\dagger}$, using an unbiased procedure that minimizes its variance. We compare our algorithm with several existing sparsification and coarsening algorithms using real-world datasets, and demonstrate that it more accurately preserves the large-scale structure.
更新日期:2020-02-18

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug