当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
Equitable vertex arboricity of $d$-degenerate graphs
arXiv - CS - Discrete Mathematics Pub Date : 2019-08-14 , DOI: arxiv-1908.05066
Xin Zhang; Bei Niu; Yan Li; Bi Li

A minimization problem in graph theory so-called the equitable tree-coloring problem can be used to formulate a structure decomposition problem on the communication network with some security considerations. Precisely, an equitable tree-$k$-coloring of a graph is a vertex coloring using $k$ distinct colors such that every color class induces a forest and the sizes of any two color classes differ by at most one. In this paper, we establish some theoretical results on the equitable tree-colorings of graphs by showing that every $d$-degenerate graph with maximum degree at most $\Delta$ is equitably tree-$k$-colorable for every integer $k\geq (\Delta+1)/2$ provided that $\Delta\geq 10d$. This generalises the result of Chen et al.[J. Comb. Optim. 34(2) (2017) 426--432] which states that every $5$-degenerate graph with maximum degree at most $\Delta$ is equitably tree-$k$-colorable for every integer $k\geq (\Delta+1)/2$.
更新日期:2020-02-18

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
舒伟
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
香港大学化学系刘俊治
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug