当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
Abstract rewriting internalized
arXiv - CS - Discrete Mathematics Pub Date : 2020-02-14 , DOI: arxiv-2002.06004
Maxime Lucas

In traditional rewriting theory, one studies a set of terms up to a set of rewriting relations. In algebraic rewriting, one instead studies a vector space of terms, up to a vector space of relations. Strikingly, although both theories are very similar, most results (such as Newman's Lemma) require different proofs in these two settings. In this paper, we develop rewriting theory internally to a category $\mathcal C$ satisfying some mild properties. In this general setting, we define the notions of termination, local confluence and confluence using the notion of reduction strategy, and prove an analogue of Newman's Lemma. In the case of $\mathcal C= \operatorname{Set}$ or $\mathcal C = \operatorname{Vect}$ we recover classical results of abstract and algebraic rewriting in a slightly more general form, closer to von Oostrom's notion of decreasing diagrams.
更新日期:2020-02-17

 

全部期刊列表>>
全球疫情及响应:BMC Medicine专题征稿
欢迎探索2019年最具下载量的化学论文
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
南方科技大学
x-mol收录
南方科技大学
自然科研论文编辑服务
上海交通大学彭文杰
中国科学院长春应化所于聪-4-8
武汉工程大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug