当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
A Breezing Proof of the KMW Bound
arXiv - CS - Discrete Mathematics Pub Date : 2020-02-14 , DOI: arxiv-2002.06005
Corinna Coupette; Christoph Lenzen

In their seminal paper from 2004, Kuhn, Moscibroda, and Wattenhofer (KMW) proved a hardness result for several fundamental graph problems in the LOCAL model: For any (randomized) algorithm, there are input graphs with $n$ nodes and maximum degree $\Delta$ on which $\Omega(\min\{\sqrt{\log n/\log \log n},\log \Delta/\log \log \Delta\})$ (expected) communication rounds are required to obtain polylogarithmic approximations to a minimum vertex cover, minimum dominating set, or maximum matching, respectively. Via reduction, this hardness extends to symmetry breaking tasks like finding maximal independent sets or maximal matchings. Today, more than $15$ years later, there is still no proof of this result that is easy on the reader. Setting out to change this, in this work, we provide a fully self-contained and \emph{simple} proof of the KMW lower bound. The key argument is algorithmic, and it relies on an invariant that can be readily verified from the generation rules of the lower bound graphs.
更新日期:2020-02-17

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug