当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
Two-sided matching markets with correlated random preferences have few stable pairs
arXiv - CS - Discrete Mathematics Pub Date : 2019-04-08 , DOI: arxiv-1904.03890
Hugo Gimbert; Claire Mathieu; Simon Mauras

Stable matching in a community consisting of $N$ men and $N$ women is a classical combinatorial problem that has been the subject of intense theoretical and empirical study since its introduction in 1962 in a seminal paper by Gale and Shapley. In this paper, we study the number of stable pairs, that is, the man/woman pairs that appear in some stable matching. We prove that if the preference lists on one side are generated at random using the popularity model of Immorlica and Mahdian, the expected number of stable edges is bounded by $N \ln N + N$, matching the asymptotic value for uniform preference lists. If in addition that popularity model is a geometric distribution, then the number of stable edges is $\mathcal O(N)$ and the incentive to manipulate is limited. If in addition the preference lists on the other side are uniform, then the number of stable edges is asymptotically $N$ up to lower order terms: most participants have a unique stable partner, hence non-manipulability.
更新日期:2020-02-17

 

全部期刊列表>>
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
欢迎探索2019年最具下载量的化学论文
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug