当前位置: X-MOL 学术Top. Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design of Active Centers in Ammonia Synthesis on Mo-Based Catalysts: A Theoretical Study
Topics in Catalysis ( IF 3.6 ) Pub Date : 2020-02-15 , DOI: 10.1007/s11244-020-01238-7
Alexander Cholach , Anna Bryliakova

The strong Mo–N bond restrains the catalytic activity of metallic Mo in ammonia synthesis. In this study, the semi-empirical calculations in conjunction with the density functional theory calculations, Brønsted–Evans–Polanyi relationship and microkinetic modeling were used to evaluate the rate of ammonia synthesis on model active sites of Mo-based alloys, nitrides, and clusters with a modified Mo–N bond. It was found that active sites of binary alloys MoδMe1−δ (0 ≤ δ ≤ 1; Me = Co, Pt, Ir, Rh) show the synergetic behavior. The sites of ternary Mo3Me3N (Me = Mo, Co, Pt, Ir) and Mo2N-type nitrides revealed higher activities than sites on Mo planes due to an extra Mo bond with the lattice N atom. The sites of octahedral clusters Mo3Me3N (Me = Mo, Co, Ir, Pt) exhibited higher catalytic activity than the sites of nitrides because their Me–N bonds are weaker than Mo–N. It was also found that tetragonal Mo2Me2 (Me = Co, Pt, Ir) and bi-tetragonal clusters Mo3Me2 (Me = Co, Ir, Pt) are the best cases because their sites provide the optimal combination of local structure and thermodynamics. Catalytic activities of the most active sites, relative to the Fe–C7 center, were found to change in the row 18.4 (threefold site Mo2Ir1 in cluster Mo3Ir2), 7.3 (Mo2 in cluster Mo2Ir2), 3.9 (Mo2Pt1 in cluster Mo3Ir3N), 3.8 (M3 on alloy Mo0.78Ir0.22), 2.0 [Mo3Pt1 on the plane (100) of Mo3Pt3N], 0.57 [Mo3 on the plane (111) of Mo2N], and 0.03 [Mo4 on the plane Mo(110)–(1 × 2)]. The design of tailor-made catalytic sites suggested in this paper can probably be applied to other catalytic systems.



中文翻译:

钼基催化剂氨合成活性中心的设计:理论研究

强大的Mo–N键抑制了金属Mo在氨合成中的催化活性。在这项研究中,结合密度泛函理论计算,Brønsted–Evans–Polanyi关系和微动力学模型的半经验计算被用于评估Mo基合金,氮化物和团簇模型活性部位上氨的合成速率。带有修饰的Mo–N键。据发现,二元合金的活性位点的Mo δ1-δ(0≤δ≤1; = CO,铂,铱,铑)示出了协同行为。三元Mo 3 Me 3 N(Me  = Mo,Co,Pt,Ir)和Mo 2的位点由于与晶格N原子的额外Mo键,N型氮化物的活度高于Mo平面上的位。八面体簇Mo 3 Me 3 N(Me  = Mo,Co,Ir,Pt)的位点比氮化物的位点表现出更高的催化活性,因为它们的Me –N键比Mo–N弱。还发现四方Mo 2 Me 2Me  = Co,Pt,Ir)和双四方簇Mo 3 Me 2Me  = Co,Ir,Pt)是最好的情况,因为它们的位点提供了局部的最佳组合。结构和热力学。相对于Fe–C,最活跃位点的催化活性7中心,被发现变化的行18.4(三重站点2的Ir 1在簇沫3的Ir 2),7.3(2在簇沫2的Ir 2),3.9(2的Pt 1在簇沫3的Ir 3 N),3.8(中号3上合金的Mo 0.78的Ir 0.22),2.0 [3的Pt 1上的钼的平面(100)3的Pt 3,0.57 [N]的Mo 3上Mo的(111)面2 N]和0.03 [平面Mo(110)–(1×2)上的Mo 4 ]。本文建议的量身定制的催化位点的设计可能可以应用于其他催化体系。

更新日期:2020-02-15
down
wechat
bug