当前位置: X-MOL 学术Mol. Syst. Des. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Heteroatom engineering of polymeric carbon nitride heterojunctions for boosting photocatalytic reduction of hexavalent uranium
Molecular Systems Design & Engineering ( IF 3.6 ) Pub Date : 2020-02-17 , DOI: 10.1039/c9me00181f
Fengtao Yu 1, 2, 3, 4 , Zhiwu Yu 4, 5, 6, 7 , Zhenzhen Xu 1, 2, 3, 4 , Jianbo Xiong 1, 2, 3, 4 , Qiangwen Fan 1, 2, 3, 4 , Xuefeng Feng 1, 2, 3, 4 , Yuan Tao 1, 2, 3, 4 , Jianli Hua 4, 8, 9, 10, 11 , Feng Luo 1, 2, 3, 4
Affiliation  

Herein, for the first time, the authors report metal-free heterojunction photocatalysts consisting of push–pull conjugated polymers and polymeric carbon nitride (CN) for efficient reduction of uranium. Furthermore, the authors innovatively proposed a heteroatomic engineering strategy to further improve the visible-light capture ability and separation of electron–hole pairs of heterojunction photocatalysts via replacing carbon atoms in donors by nitrogen atoms. The result revealed that in the photocatalytic reduction of uranium, the kinetic constant of PFB/CN (0.037 min−1) was 2.47 times higher than that of CN (0.015 min−1). Notably, copolymerization of a nitrogen-containing electron donor carbazole unit into the polymer backbone would further widen the light response range and promote electron–hole separation within PCB/CN as compared to PFB/CN, leading to a higher kinetic constant (0.049 min−1), 3.27 times higher than that of CN. The current work underlines that adapting a reasonable heteroatomic engineering strategy for polymer heterojunctions is a remarkably effective strategy to develop up-and-coming organic semiconductor photocatalysts for efficient reduction of uranium.

中文翻译:

聚合氮化碳异质结的杂原子工程用于促进光催化还原六价铀

在此,作者首次报道了由金属组成的推挽共轭聚合物和聚合氮化碳(CN)组成的无金属异质结光催化剂,用于有效还原铀。此外,作者创新地提出了一种杂原子工程策略,以通过将供体中的碳原子替换为氮原子来进一步提高可见光捕获能力和异质结光催化剂的电子-空穴对的分离。结果表明,在铀的光催化还原中,PFB / CN(0.037 min -1)的动力学常数是CN(0.015 min -1)的2.47倍。)。值得注意的是,含氮电子给体咔唑单元的共聚到聚合物主链将进一步扩大光响应范围和内促进电子-空穴分离的PCB / CN比PFB / CN,导致较高的动力学常数(0.049分钟- 1),是CN的3.27倍。当前的工作强调,针对聚合物异质结采用合理的杂原子工程策略是开发新兴的有机半导体光催化剂以有效还原铀的一种非常有效的策略。
更新日期:2020-02-17
down
wechat
bug