当前位置: X-MOL 学术Appl. Phys. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Magnetocaloric effect in Ni–Fe–Mn–Sn microwires with nano-sized γ precipitates
Applied Physics Letters ( IF 4 ) Pub Date : 2020-02-10 , DOI: 10.1063/1.5132767
Hehe Zhang 1, 2 , Xuexi Zhang 1 , Mingfang Qian 1 , Limeng Yin 2 , Longsha Wei 1 , Dawei Xing 1 , Jianfei Sun 1 , Lin Geng 1
Affiliation  

Ni45.6Fe3.6Mn38.4Sn12.4 microwires, with nanoscale γ-phase precipitates that enhance the magnetocaloric effects (MCEs) and mechanical properties, were prepared by a melt-extraction technique and subsequent high temperature annealing. The atomic ordering degree significantly increased after annealing, leading to a considerable increment in the structural entropy change (ΔStr) from 4.5 J/kg·K in the as-extracted microwire to 26.6 J/kg·K in the annealed one, and the magnetization difference (ΔM) from 35 A·m2/kg to 51 A·m2/kg under a magnetic field of 5.0 T. Consequently, a positive magnetic entropy change (ΔSM) peak of 15.2 J/kg·K with working temperature span (ΔTFWHM) of 12 K for the first-order martensite transformation followed by a negative ΔSM peak of −4.3 J/kg·K with ΔTFWHM = 50 K for the second-order magnetic transition under μ0ΔH = 5.0 T was achieved. By employing both magnetizing and demagnetizing processes for magnetic cooling, the two successive inverse and conventional MCEs in Ni–Fe–Mn–Sn microwires may show potential applications for micro-devices and systems.Ni45.6Fe3.6Mn38.4Sn12.4 microwires, with nanoscale γ-phase precipitates that enhance the magnetocaloric effects (MCEs) and mechanical properties, were prepared by a melt-extraction technique and subsequent high temperature annealing. The atomic ordering degree significantly increased after annealing, leading to a considerable increment in the structural entropy change (ΔStr) from 4.5 J/kg·K in the as-extracted microwire to 26.6 J/kg·K in the annealed one, and the magnetization difference (ΔM) from 35 A·m2/kg to 51 A·m2/kg under a magnetic field of 5.0 T. Consequently, a positive magnetic entropy change (ΔSM) peak of 15.2 J/kg·K with working temperature span (ΔTFWHM) of 12 K for the first-order martensite transformation followed by a negative ΔSM peak of −4.3 J/kg·K with ΔTFWHM = 50 K for the second-order magnetic transition under μ0ΔH = 5.0 T was achieved. By employing both magnetizing and demagnetizing processes for magnetic cooling, the two successive inverse and conventional MCEs in Ni–Fe–Mn–Sn microwi...

中文翻译:

具有纳米尺寸γ沉淀物的Ni-Fe-Mn-Sn微丝中的磁热效应

Ni45.6Fe3.6Mn38.4Sn12.4 微米线具有纳米级 γ 相沉淀物,可增强磁热效应 (MCE) 和机械性能,通过熔体提取技术和随后的高温退火制备。退火后原子有序度显着增加,导致结构熵变(ΔStr)从提取时的 4.5 J/kg·K 显着增加到退火后的 26.6 J/kg·K,并且磁化强度增加在 5.0 T 的磁场下,从 35 A·m2/kg 到 51 A·m2/kg 的差异 (ΔM)。因此,在工作温度跨度 (ΔTFWHM) 下,正磁熵变 (ΔSM) 峰值为 15.2 J/kg·K ) 的 12 K 用于一级马氏体转变,然后是负 ΔSM 峰 -4.3 J/kg·K,ΔTFWHM = 50 K,用于在 μ0ΔH = 5 下的二级磁转变。达到了 0 T。通过采用磁化和退磁工艺进行磁冷却,Ni-Fe-Mn-Sn 微丝中的两个连续反向和常规 MCE 可能显示出微器件和系统的潜在应用。 Ni45.6Fe3.6Mn38.4Sn12.4 微丝,具有通过熔融提取技术和随后的高温退火制备了纳米级 γ 相沉淀物,可增强磁热效应 (MCE) 和机械性能。退火后原子有序度显着增加,导致结构熵变(ΔStr)从提取时的 4.5 J/kg·K 显着增加到退火后的 26.6 J/kg·K,并且磁化强度增加在 5.0 T 的磁场下,从 35 A·m2/kg 到 51 A·m2/kg 的差异 (ΔM)。因此,一阶马氏体转变的正磁熵变 (ΔSM) 峰为 15.2 J/kg·K,工作温度跨度 (ΔTFWHM) 为 12 K,随后是负的 ΔSM 峰 -4.3 J/kg·K,ΔTFWHM = μ0ΔH = 5.0 T 下的二阶磁跃迁达到 50 K。通过采用磁化和退磁过程进行磁冷却,Ni-Fe-Mn-Sn 微结构中的两个连续的反向和常规 MCEs...
更新日期:2020-02-10
down
wechat
bug