当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
Breaking limitation of quantum annealer in solving optimization problems under constraints
arXiv - CS - Discrete Mathematics Pub Date : 2020-02-13 , DOI: arxiv-2002.05298
Masayuki Ohzeki

Quantum annealing is a generic solver for optimization problems that uses fictitious quantum fluctuation. The most groundbreaking progress in the research field of quantum annealing is its hardware implementation, i.e., the so-called quantum annealer, using artificial spins. However, the connectivity between the artificial spins is sparse and limited on a special network known as the chimera graph. Several embedding techniques have been proposed, but the number of logical spins, which represents the optimization problems to be solved, is drastically reduced. In particular, an optimization problem including fully or even partly connected spins suffers from low embeddable size on the chimera graph. In the present study, we propose an alternative approach to solve a large-scale optimization problem on the chimera graph via a well-known method in statistical mechanics called the Hubbard-Stratonovich transformation or its variants. The proposed method can be used to deal with a fully connected Ising model without embedding on the chimera graph and leads to nontrivial results of the optimization problem. We tested the proposed method with a number of partition problems involving solving linear equations and the traffic flow optimization problem in Sendai and Kyoto cities in Japan.
更新日期:2020-02-14

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug