当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
Genetic Algorithms for Redundancy in Interaction Testing
arXiv - CS - Discrete Mathematics Pub Date : 2020-02-13 , DOI: arxiv-2002.05421
Ryan E. Dougherty

It is imperative for testing to determine if the components within large-scale software systems operate functionally. Interaction testing involves designing a suite of tests, which guarantees to detect a fault if one exists among a small number of components interacting together. The cost of this testing is typically modeled by the number of tests, and thus much effort has been taken in reducing this number. Here, we incorporate redundancy into the model, which allows for testing in non-deterministic environments. Existing algorithms for constructing these test suites usually involve one "fast" algorithm for generating most of the tests, and another "slower" algorithm to "complete" the test suite. We employ a genetic algorithm that generalizes these approaches that also incorporates redundancy by increasing the number of algorithms chosen, which we call "stages." By increasing the number of stages, we show that not only can the number of tests be reduced compared to existing techniques, but the computational time in generating them is also greatly reduced.
更新日期:2020-02-14

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
香港大学化学系刘俊治
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug