当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
The Minimization of Random Hypergraphs
arXiv - CS - Discrete Mathematics Pub Date : 2019-10-01 , DOI: arxiv-1910.00308
Thomas Bläsius; Tobias Friedrich; Martin Schirneck

We investigate the maximum-entropy model $\mathcal{B}_{n,m,p}$ for random $n$-vertex, $m$-edge multi-hypergraphs with expected edge size $pn$. We show that the expected size of the minimization $\min(\mathcal{B}_{n,m,p})$, i.e., the number of inclusion-wise minimal edges of $\mathcal{B}_{n,m,p}$, undergoes a phase transition with respect to $m$. If $m$ is at most $1/(1-p)^{(1-p)n}$, then $\mathrm{E}[|\min(\mathcal{B}_{n,m,p})|]$ is of order $\Theta(m)$, while for $m \ge 1/(1-p)^{(1-p+\varepsilon)n}$ for any $\varepsilon > 0$, it is $\Theta( 2^{(\mathrm{H}(\alpha) + (1-\alpha) \log_2 p) n}/ \sqrt{n})$. Here, $\mathrm{H}$ denotes the binary entropy function and $\alpha = - (\log_{1-p} m)/n$. The result implies that the maximum expected number of minimal edges over all $m$ is $\Theta((1+p)^n/\sqrt{n})$. Our structural findings have algorithmic implications for minimizing an input hypergraph, which has applications in the profiling of relational databases as well as for the Orthogonal Vectors problem studied in fine-grained complexity. We make several technical contributions that are of independent interest in probability. First, we improve the Chernoff--Hoeffding theorem on the tail of the binomial distribution. In detail, we show that for a binomial variable $Y \sim \operatorname{Bin}(n,p)$ and any $0 < x < p$, it holds that $\mathrm{P}[Y \le xn] = \Theta( 2^{-\!\mathrm{D}(x \,{\|}\, p) n}/\sqrt{n})$, where $\mathrm{D}$ is the binary Kullback--Leibler divergence between Bernoulli distributions. We give explicit upper and lower bounds on the constants hidden in the big-O notation that hold for all $n$. Secondly, we establish the fact that the probability of a set of cardinality $i$ being minimal after $m$ i.i.d. maximum-entropy trials exhibits a sharp threshold behavior at $i^* = n + \log_{1-p} m$.
更新日期:2020-02-14

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
舒伟
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
香港大学化学系刘俊治
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug