当前位置: X-MOL 学术STEM CELLS › 论文详情
Constitutive activity of a G protein-coupled receptor, DRD1, contributes to human cerebral organoid formation.
STEM CELLS ( IF 5.614 ) Pub Date : 2020-02-13 , DOI: 10.1002/stem.3156
Qinying Wang,Xiaoxu Dong,Jing Lu,Tingting Hu,Gang Pei

The intricate balance of neural stem cell (NSC) amplification and neurogenesis is central to nervous system development. Dopamine D1 receptor (DRD1) is a typical G protein-coupled receptor (GPCR) mainly expressed in neurogenic area, with high constitutive activity. The receptor appears in the embryonic period before the formation of mature synaptic contacts, which indicates that dopamine receptor and its constitutive activity play crucial roles in the embryonic brain development. Here, we found that DRD1 was enriched in human NSCs. Inhibition of the receptor activity by its inverse agonists promoted human NSCs proliferation and impeded its differentiation. These results were also mimicked by genetic knockdown of DRD1, which also blocked the effects of inverse agonists, suggesting a receptor-dependent manner. More interestingly, knock-in A229T mutant with reduced DRD1 constitutive activity by CRISPR-Cas9 genome editing technology resulted into increased endogenous human NSCs proliferation. These results were well reproduced in human cerebral organoids, and inhibition of the DRD1 constitutive activity by its inverse agonists induced the expansion and folding of human cerebral organoids. The anatomic analysis uncovered that decreasing the constitutive activity of DRD1 by its inverse agonists promoted the NSCs proliferation and maintenance that led to hindered cortical neurogenesis. Further mechanistic studies revealed that the PKC-CBP pathway was involved in the regulation by DRD1. Thus, our findings indicate that the constitutive activity of DRD1 and possibly other GPCRs plays an important role in the development of human nervous system.
更新日期:2020-02-18

 

全部期刊列表>>
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
欢迎探索2019年最具下载量的化学论文
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
南方科技大学
x-mol收录
南方科技大学
自然科研论文编辑服务
西湖大学
中国科学院长春应化所于聪-4-8
武汉工程大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug